导航菜单

Basics of Differentials

Differentials capture the linear approximation of a function near a point, turning derivative information into a small-increment language. This section complements the derivative basics and focuses on definitions, properties, and quick applications.

Definition

Differential

If f(x)f(x) is differentiable at xx, its differential at that point is

df=f(x)dx,df = f'(x)\,dx,

where dfdf is the change in ff and dxdx is a small change in the independent variable.

Form of the Differential

Differential formula
df=f(x)dxdf = f'(x)\,dx

To compute a differential, find the derivative first, then multiply by dxdx.

Geometric meaning

On the graph of y=f(x)y = f(x), dfdf is the vertical change along the tangent line produced by a horizontal step dxdx. The pair (dx,df)(dx, df) is the linearized version of the curve near the point.

Properties

Linearity

Linearity
d(af+bg)=adf+bdgd(af + bg) = a \cdot df + b \cdot dg

Product rule

Product rule
d(uv)=udv+vdud(uv) = u \cdot dv + v \cdot du

Quotient rule

Quotient rule
d ⁣(uv)=vduudvv2d\!\left(\frac{u}{v}\right) = \frac{v \cdot du - u \cdot dv}{v^2}

Quick uses

  1. Linear approximation: f(x+Δx)f(x)+dff(x + \Delta x) \approx f(x) + df for small Δx\Delta x.
  2. Error estimation: bound output error by controlling dx|dx|.
  3. Change of variables: rewrite expressions via dxdx and dfdf when substituting.

总结

本文出现的符号

符号类型读音/说明在本文中的含义
dxdx数学符号“dee x”自变量的微小增量
dfdf数学符号“dee f”函数值的微小增量

中英对照

中文术语英文术语音标说明
微分differential/ˌdɪfəˈrɛnʃəl/将导数转化为增量形式的概念
线性性linearity/ˌlɪniˈærəti/微分对加法与常数倍运算保持线性
乘积法则product rule/ˈprɒdʌkt ruːl/微分的乘积拆分公式
商法则quotient rule/ˈkwəʊʃənt ruːl/微分的商函数公式
线性近似linear approximation/ˈlɪniə əˌprɒksɪˈmeɪʃən/使用微分估计函数值变化
误差估计error estimation/ˈɛrə ˌɛstɪˈmeɪʃən/利用微分评估计算误差
变量替换change of variables/tʃeɪndʒ əv ˈvɛəriəb(ə)lz/基于微分进行的变量转换

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  3. 3

    Continuity in Advanced Calculus

    先修课程

    A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.

    前往课程
  4. 4

    Differential Calculus of One Variable

    当前课程

    A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.

    前往课程

搜索