导航菜单

Integral Test

Definition

Integral test

Let f(x)f(x) be continuous, decreasing, and nonnegative on [1,+)[1,+\infty) with an=f(n)a_n = f(n). Then n=1an\sum_{n=1}^{\infty} a_n and 1+f(x)dx\int_1^{+\infty} f(x) dx converge or diverge together.

Integral test statement

n=1an\sum_{n=1}^{\infty} a_n converges or diverges with 1+f(x)dx\int_1^{+\infty} f(x) dx when an=f(n)a_n = f(n) and ff is continuous, decreasing, and nonnegative on [1,+)[1,+\infty).

When to use

  • Terms come from a nice continuous function.
  • Other tests are awkward.

Example

Example 1

Determine convergence of n=11nlnn\sum_{n=1}^{\infty} \frac{1}{n\ln n}.

Solution: f(x)=1xlnxf(x) = \frac{1}{x\ln x}; 2+1xlnxdx=ln(lnx)2+=+\int_2^{+\infty} \frac{1}{x\ln x} dx = \ln(\ln x)\big|_2^{+\infty} = +\infty, so the series diverges.

练习题

练习 1

Determine convergence of n=11nlnn\sum_{n=1}^{\infty} \frac{1}{n\ln n}.

参考答案

思路:Use the integral test with f(x)=1xlnxf(x)=\frac{1}{x\ln x}.

答案:积分发散,级数发散。


总结

本文出现的符号

符号类型读音/说明在本文中的含义
\sum希腊字母Sigma(西格玛)求和符号,表示级数
\infty数学符号无穷大表示无穷级数,项数无限
\int数学符号积分表示定积分或不定积分
f(x)f(x)数学符号函数连续函数
ana_n数学符号通项级数中第 nn
ln\ln数学符号自然对数自然对数函数

中英对照

中文术语英文术语音标说明
积分判别法integral test/ˈɪntɪɡrəl test/通过积分判断级数收敛性的方法
收敛convergence/kənˈvɜːdʒəns/级数部分和序列有有限极限
发散divergence/daɪˈvɜːdʒəns/级数部分和序列无有限极限
连续函数continuous function/kənˈtɪnjʊəs ˈfʌŋkʃən/在定义域内连续的函数
单调递减monotonically decreasing/ˌmɒnəˈtɒnɪkli dɪˈkriːsɪŋ/函数值随自变量增大而减小

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索