导航菜单

Leibniz Test

Definition

Leibniz test

For an alternating series n=1(1)n1an\sum_{n=1}^{\infty} (-1)^{n-1} a_n, if

  1. an0a_n \ge 0,
  2. an+1ana_{n+1} \le a_n for large nn (monotone decreasing),
  3. limnan=0\lim_{n \to \infty} a_n = 0,

then the series converges (sufficient condition).

Leibniz conditions

Alternating series n=1(1)n1an\sum_{n=1}^{\infty} (-1)^{n-1} a_n converges if:

  1. an0a_n \ge 0
  2. an+1ana_{n+1} \le a_n
  3. limnan=0\lim_{n \to \infty} a_n = 0

Example

Example 1

Determine convergence of n=1(1)n+1n\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}.

Solution: an=1na_n = \frac{1}{n} satisfies an>0a_n>0, an+1<ana_{n+1}<a_n, an0a_n \to 0; thus it converges.

练习题

练习 1

Determine convergence of n=1(1)n+1n1/2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{1/2}}.

参考答案

思路:Absolute series diverges (p=12p=\frac{1}{2}). Check Leibniz conditions.

步骤

  1. an=1n1/2>0a_n = \frac{1}{n^{1/2}} > 0
  2. an+1<ana_{n+1} < a_n
  3. limnan=0\lim_{n \to \infty} a_n = 0

All hold ⇒ conditional convergence.

答案:收敛(条件收敛)。


总结

本文出现的符号

符号类型读音/说明在本文中的含义
\sum希腊字母Sigma(西格玛)求和符号,表示级数
\infty数学符号无穷大表示无穷级数,项数无限
lim\lim数学符号极限表示数列或函数的极限
ana_n数学符号通项级数中第 nn

中英对照

中文术语英文术语音标说明
莱布尼茨判别法Leibniz test/ˈlaɪbnɪts test/判断交错级数收敛性的方法
交错级数alternating series/ˈɔːltəneɪtɪŋ ˈsɪəriːz/正负项交替出现的级数
收敛convergence/kənˈvɜːdʒəns/级数部分和序列有有限极限
条件收敛conditional convergence/kənˈdɪʃənəl kənˈvɜːdʒəns/级数收敛但绝对值级数发散的情况
充分条件sufficient condition/səˈfɪʃənt kənˈdɪʃən/保证级数收敛的充分条件

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索