Leibniz Test
Definition
For an alternating series , if
- ,
- for large (monotone decreasing),
- ,
then the series converges (sufficient condition).
(sigma): summation symbol.
(infinity): infinitely many terms.
: limit symbol.
Alternating series converges if:
Example
Example 1
Determine convergence of .
Solution: satisfies , , ; thus it converges.
练习题
练习 1
Determine convergence of .
思路:Absolute series diverges (). Check Leibniz conditions.
步骤:
All hold ⇒ conditional convergence.
答案:收敛(条件收敛)。
总结
本文出现的符号
| 符号 | 类型 | 读音/说明 | 在本文中的含义 |
|---|---|---|---|
| 希腊字母 | Sigma(西格玛) | 求和符号,表示级数 | |
| 数学符号 | 无穷大 | 表示无穷级数,项数无限 | |
| 数学符号 | 极限 | 表示数列或函数的极限 | |
| 数学符号 | 通项 | 级数中第 项 |
中英对照
| 中文术语 | 英文术语 | 音标 | 说明 |
|---|---|---|---|
| 莱布尼茨判别法 | Leibniz test | /ˈlaɪbnɪts test/ | 判断交错级数收敛性的方法 |
| 交错级数 | alternating series | /ˈɔːltəneɪtɪŋ ˈsɪəriːz/ | 正负项交替出现的级数 |
| 收敛 | convergence | /kənˈvɜːdʒəns/ | 级数部分和序列有有限极限 |
| 条件收敛 | conditional convergence | /kənˈdɪʃənəl kənˈvɜːdʒəns/ | 级数收敛但绝对值级数发散的情况 |
| 充分条件 | sufficient condition | /səˈfɪʃənt kənˈdɪʃən/ | 保证级数收敛的充分条件 |
课程路线图
- 1
Exploring Functions in Advanced Mathematics
先修课程Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程 - 2
Sequences
先修课程Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.
前往课程 - 3
The World of Limits in Advanced Mathematics
先修课程Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程 - 4
Infinite Series
当前课程Explore convergence tests, summation, power-series expansions, and applications.
前往课程