导航菜单

Ratio Test (d'Alembert)

Definition

Ratio test

For a positive series n=1an\sum_{n=1}^{\infty} a_n with an>0a_n > 0, if

limnan+1an=ρ,\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho,

then:

  1. ρ<1\rho < 1 ⇒ convergent
  2. ρ>1\rho > 1 ⇒ divergent
  3. ρ=1\rho = 1 ⇒ inconclusive
Ratio test rule

limnan+1an=ρ\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho

  • ρ<1\rho < 1: convergent
  • ρ>1\rho > 1: divergent
  • ρ=1\rho = 1: test fails

When to use

  • Factorials or exponentials appear.
  • Adjacent-term ratio is easy to compute.

Example

Example 1

Determine convergence of n=1n!nn\sum_{n=1}^{\infty} \frac{n!}{n^n}.

Solution: an=n!nna_n = \frac{n!}{n^n},

an+1an=(nn+1)n1e<1\frac{a_{n+1}}{a_n} = \left(\frac{n}{n+1}\right)^n \to \frac{1}{e} < 1, so it converges.

练习题

练习 1

Determine convergence of n=1n2n\sum_{n=1}^{\infty} \frac{n}{2^n}.

参考答案

思路:Ratio test; an+1an=n+12n12<1\frac{a_{n+1}}{a_n} = \frac{n+1}{2n} \to \frac{1}{2} < 1.

答案:收敛(convergence)。


总结

本文出现的符号

符号类型读音/说明在本文中的含义
ρ\rho希腊字母Rho(柔)表示级数收敛性判别中的极限值
\sum希腊字母Sigma(西格玛)求和符号,表示级数
\infty数学符号无穷大表示无穷级数,项数无限
lim\lim数学符号极限表示数列或函数的极限
ee数学符号自然常数自然对数的底,约等于 2.71828

中英对照

中文术语英文术语音标说明
比值判别法ratio test/ˈreɪʃiəʊ test/通过相邻项比值判断收敛性的方法
达朗贝尔判别法d’Alembert’s test/dælˈæmbəts test/比值判别法的另一种称呼
正项级数positive series/ˈpɒzətɪv ˈsɪəriːz/所有项都非负的级数
收敛convergence/kənˈvɜːdʒəns/级数部分和序列有有限极限
发散divergence/daɪˈvɜːdʒəns/级数部分和序列无有限极限

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索