导航菜单

Root Test (Cauchy)

Definition

Root test

For a positive series n=1an\sum_{n=1}^{\infty} a_n with an0a_n \ge 0, if

limnann=ρ,\lim_{n \to \infty} \sqrt[n]{a_n} = \rho,

then:

  1. ρ<1\rho < 1 ⇒ convergent
  2. ρ>1\rho > 1 ⇒ divergent
  3. ρ=1\rho = 1 ⇒ inconclusive
Root test rule

limnann=ρ\lim_{n \to \infty} \sqrt[n]{a_n} = \rho

  • ρ<1\rho < 1: convergent
  • ρ>1\rho > 1: divergent
  • ρ=1\rho = 1: test fails

When to use

  • Terms involve nn-th powers.
  • Ratio test is messy.

总结

本文出现的符号

符号类型读音/说明在本文中的含义
ρ\rho希腊字母Rho(柔)表示级数收敛性判别中的极限值
\sum希腊字母Sigma(西格玛)求和符号,表示级数
\infty数学符号无穷大表示无穷级数,项数无限
lim\lim数学符号极限表示数列或函数的极限
ann\sqrt[n]{a_n}数学符号nn 次根ana_nnn 次根

中英对照

中文术语英文术语音标说明
根值判别法root test/ruːt test/通过 nn 次根判断收敛性的方法
柯西判别法Cauchy’s test/ˈkoʊʃiz test/根值判别法的另一种称呼
正项级数positive series/ˈpɒzətɪv ˈsɪəriːz/所有项都非负的级数
收敛convergence/kənˈvɜːdʒəns/级数部分和序列有有限极限
发散divergence/daɪˈvɜːdʒəns/级数部分和序列无有限极限

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索