导航菜单

Harmonic Series

Definition

Harmonic series

The series n=11n\sum_{n=1}^{\infty} \frac{1}{n} is called the harmonic series. It is the special case of a pp-series with p=1p = 1.

Convergence

Divergence of the harmonic series

The harmonic series diverges.

Proofs

Method 1: pp-series rule

It is a pp-series with p=11p = 1 \le 1, so it diverges.

Method 2: Integral test

Compute 1+1xdx=lnx1+=+\int_1^{+\infty} \frac{1}{x} dx = \ln x \big|_1^{+\infty} = +\infty, so the series diverges.

Other divergence proofs

Grouping method

Group terms as

1+12+(13+14)+(15+16+17+18)+1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \cdots

Each group exceeds 12\frac{1}{2}, so partial sums grow without bound; the series diverges.

Comparison

Since 1n1n+1\frac{1}{n} \geq \frac{1}{n+1},

n=11nn=21n\sum_{n=1}^{\infty} \frac{1}{n} \geq \sum_{n=2}^{\infty} \frac{1}{n}

If n=11n\sum_{n=1}^{\infty} \frac{1}{n} converged, so would n=21n\sum_{n=2}^{\infty} \frac{1}{n}, contradicting divergence; hence it diverges.

练习题

练习 1

Determine whether n=11n\sum_{n=1}^{\infty} \frac{1}{n} converges.

参考答案

思路:It is the harmonic series (p=1p=1).

答案:Divergent.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
\sum希腊字母Sigma(西格玛)求和符号,表示级数
\infty数学符号无穷大表示无穷级数,项数无限
nn数学符号项数级数中的项数
\int数学符号积分表示定积分或不定积分
ln\ln数学符号自然对数自然对数函数

中英对照

中文术语英文术语音标说明
调和级数harmonic series/hɑːˈmɒnɪk ˈsɪəriːz/n=11n\sum_{n=1}^{\infty} \frac{1}{n}p=1p = 1 时的 pp 级数
发散divergence/daɪˈvɜːdʒəns/级数部分和序列无有限极限
积分判别法integral test/ˈɪntɪɡrəl test/通过积分判断级数收敛性的方法
比较判别法comparison test/kəmˈpærɪsən test/通过比较判断级数收敛性的方法
分组法grouping method/ˈɡruːpɪŋ ˈmeθəd/通过分组证明级数发散的方法

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索