Harmonic Series
Definition
The series is called the harmonic series. It is the special case of a -series with .
(sigma): Greek letter, pronounced “sigma”, denotes summation.
(infinity): indicates infinitely many terms.
Convergence
The harmonic series diverges.
Proofs
Method 1: -series rule
It is a -series with , so it diverges.
Method 2: Integral test
Compute , so the series diverges.
Other divergence proofs
Grouping method
Group terms as
Each group exceeds , so partial sums grow without bound; the series diverges.
Comparison
Since ,
If converged, so would , contradicting divergence; hence it diverges.
练习题
练习 1
Determine whether converges.
思路:It is the harmonic series ().
答案:Divergent.
总结
本文出现的符号
| 符号 | 类型 | 读音/说明 | 在本文中的含义 |
|---|---|---|---|
| 希腊字母 | Sigma(西格玛) | 求和符号,表示级数 | |
| 数学符号 | 无穷大 | 表示无穷级数,项数无限 | |
| 数学符号 | 项数 | 级数中的项数 | |
| 数学符号 | 积分 | 表示定积分或不定积分 | |
| 数学符号 | 自然对数 | 自然对数函数 |
中英对照
| 中文术语 | 英文术语 | 音标 | 说明 |
|---|---|---|---|
| 调和级数 | harmonic series | /hɑːˈmɒnɪk ˈsɪəriːz/ | , 时的 级数 |
| 发散 | divergence | /daɪˈvɜːdʒəns/ | 级数部分和序列无有限极限 |
| 积分判别法 | integral test | /ˈɪntɪɡrəl test/ | 通过积分判断级数收敛性的方法 |
| 比较判别法 | comparison test | /kəmˈpærɪsən test/ | 通过比较判断级数收敛性的方法 |
| 分组法 | grouping method | /ˈɡruːpɪŋ ˈmeθəd/ | 通过分组证明级数发散的方法 |
课程路线图
- 1
Exploring Functions in Advanced Mathematics
先修课程Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程 - 2
Sequences
先修课程Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.
前往课程 - 3
The World of Limits in Advanced Mathematics
先修课程Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程 - 4
Infinite Series
当前课程Explore convergence tests, summation, power-series expansions, and applications.
前往课程