导航菜单

Arctangent Series

Definition

Arctangent series

The series n=0(1)n2n+1x2n+1\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} is called the arctangent series.

Convergence

Convergence of the arctangent series
  • Interval of convergence: [1,1][-1, 1]
  • Sum:

n=0(1)n2n+1x2n+1=arctanx\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} = \arctan x

Application

Useful for computing π\pi: when x=1x = 1,

arctan1=π4=n=0(1)n2n+1=113+15,\arctan 1 = \frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \cdots, the classic Leibniz series.

Examples

Example 1

Approximate arctan12\arctan \frac{1}{2} with the first five terms.

Solution: arctan12121323+15251727+19290.4636\arctan \frac{1}{2} \approx \frac{1}{2} - \frac{1}{3 \cdot 2^3} + \frac{1}{5 \cdot 2^5} - \frac{1}{7 \cdot 2^7} + \frac{1}{9 \cdot 2^9} \approx 0.4636.

练习题

练习 1

Approximate arctan13\arctan \frac{1}{3} with the first four terms.

参考答案

思路:Use the arctangent series with x=13x = \frac{1}{3}.

步骤

  1. Terms: 13\frac{1}{3}, 181-\frac{1}{81}, 11215\frac{1}{1215}, 115309-\frac{1}{15309}
  2. Sum: 13181+112151153090.3218\frac{1}{3} - \frac{1}{81} + \frac{1}{1215} - \frac{1}{15309} \approx 0.3218

答案arctan130.3218\arctan \frac{1}{3} \approx 0.3218(前四项)。


总结

本文出现的符号

符号类型读音/说明在本文中的含义
\sum希腊字母Sigma(西格玛)求和符号,表示级数
\infty数学符号无穷大表示无穷级数,项数无限
xx数学符号变量反正切级数中的变量
π\pi希腊字母Pi(派)圆周率,约等于 3.14159
arctan\arctan数学符号反正切反正切函数

中英对照

中文术语英文术语音标说明
反正切级数arctangent series/ɑːkˈtændʒənt ˈsɪəriːz/反正切函数的级数展开
收敛区间interval of convergence/ˈɪntəvəl əv kənˈvɜːdʒəns/级数收敛的区间
收敛convergence/kənˈvɜːdʒəns/级数部分和序列有有限极限
莱布尼茨级数Leibniz series/ˈlaɪbnɪts ˈsɪəriːz/用于计算 π\pi 的级数

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索