Arctangent Series
Definition
The series is called the arctangent series.
(sigma): summation symbol.
(infinity): infinitely many terms.
Convergence
- Interval of convergence:
- Sum:
Application
Useful for computing : when ,
the classic Leibniz series.
Examples
Example 1
Approximate with the first five terms.
Solution: .
练习题
练习 1
Approximate with the first four terms.
思路:Use the arctangent series with .
步骤:
- Terms: , , ,
- Sum:
答案:(前四项)。
总结
本文出现的符号
| 符号 | 类型 | 读音/说明 | 在本文中的含义 |
|---|---|---|---|
| 希腊字母 | Sigma(西格玛) | 求和符号,表示级数 | |
| 数学符号 | 无穷大 | 表示无穷级数,项数无限 | |
| 数学符号 | 变量 | 反正切级数中的变量 | |
| 希腊字母 | Pi(派) | 圆周率,约等于 3.14159 | |
| 数学符号 | 反正切 | 反正切函数 |
中英对照
| 中文术语 | 英文术语 | 音标 | 说明 |
|---|---|---|---|
| 反正切级数 | arctangent series | /ɑːkˈtændʒənt ˈsɪəriːz/ | 反正切函数的级数展开 |
| 收敛区间 | interval of convergence | /ˈɪntəvəl əv kənˈvɜːdʒəns/ | 级数收敛的区间 |
| 收敛 | convergence | /kənˈvɜːdʒəns/ | 级数部分和序列有有限极限 |
| 莱布尼茨级数 | Leibniz series | /ˈlaɪbnɪts ˈsɪəriːz/ | 用于计算 的级数 |
课程路线图
- 1
Exploring Functions in Advanced Mathematics
先修课程Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程 - 2
Sequences
先修课程Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.
前往课程 - 3
The World of Limits in Advanced Mathematics
先修课程Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程 - 4
Infinite Series
当前课程Explore convergence tests, summation, power-series expansions, and applications.
前往课程