导航菜单

Cosine Series

Definition

Cosine series

The series n=0(1)n(2n)!x2n\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} is called the cosine series.

Convergence

Convergence of the cosine series

For any real xx,

n=0(1)n(2n)!x2n=cosx\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = \cos x

Proof sketch

Ratio test:

an+1an=x2(2n+1)(2n+2),limnan+1an=0<1,\frac{a_{n+1}}{a_n} = -\frac{x^2}{(2n+1)(2n+2)}, \quad \lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = 0 < 1, so it converges for all real xx.

Examples

Example 1

Sum n=0(1)n(2n)!(π3)2n\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{3}\right)^{2n}.

Solution: x=π3x = \frac{\pi}{3}, so cos(π3)=12\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}.

Example 2

Sum n=0(1)n(2n)!π2n\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \pi^{2n}.

Solution: x=πx = \pi, so cos(π)=1\cos(\pi) = -1.

练习题

练习 1

Sum n=0(1)n(2n)!(π4)2n\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{4}\right)^{2n}.

参考答案

思路:Cosine series with x=π4x = \frac{\pi}{4}.

答案cos(π4)=22\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}

练习 2

Sum n=0(1)n(2n)!(π6)2n\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{6}\right)^{2n}.

参考答案

思路x=π6x = \frac{\pi}{6}.

答案cos(π6)=32\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}


总结

本文出现的符号

符号类型读音/说明在本文中的含义
\sum希腊字母Sigma(西格玛)求和符号,表示级数
\infty数学符号无穷大表示无穷级数,项数无限
n!n!数学符号阶乘nn 的阶乘,n!=n×(n1)××1n! = n \times (n-1) \times \cdots \times 1
xx数学符号变量余弦级数中的变量
π\pi希腊字母Pi(派)圆周率,约等于 3.14159
cos\cos数学符号余弦余弦函数
lim\lim数学符号极限表示数列或函数的极限

中英对照

中文术语英文术语音标说明
余弦级数cosine series/ˈkəʊsaɪn ˈsɪəriːz/形如 n=0(1)n(2n)!x2n\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} 的级数
收敛convergence/kənˈvɜːdʒəns/级数部分和序列有有限极限
比值判别法ratio test/ˈreɪʃiəʊ test/通过相邻项比值判断收敛性的方法

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索