导航菜单

Using Substitution

Substitution rewrites the variable to simplify the integrand.

定积分的换元法

Substitution for definite integrals

If x=φ(t)x=\varphi(t) is differentiable and monotone on [α,β][\alpha,\beta], with φ(α)=a, φ(β)=b\varphi(\alpha)=a,\ \varphi(\beta)=b, and ff is continuous on [a,b][a,b], then

abf(x)dx=αβf(φ(t))φ(t)dt.\int_a^b f(x)\,dx = \int_{\alpha}^{\beta} f\bigl(\varphi(t)\bigr)\,\varphi'(t)\,dt.

换元法要点

  1. Change limits: map a,ba,b to new limits α,β\alpha,\beta.
  2. Monotone & continuous: pick φ\varphi monotone/differentiable so f(φ(t))φ(t)f(\varphi(t))\varphi'(t) is continuous.
  3. Pattern spotting: try trig/hyperbolic for roots like a2x2\sqrt{a^2-x^2}; linear for (ax+b)k(ax+b)^k.
  4. Combine with parts: sometimes substitute to isolate a factor, then integrate by parts.

常见换元策略

  • Linear: x=at+bx=at+b (shift/scale).
  • Power: x=tkx=t^{\,k} or t=x1/kt=x^{1/k}.
  • Trig: x=asintx=a\sin t, x=atantx=a\tan t for radicals a2x2\sqrt{a^2-x^2}, x2+a2\sqrt{x^2+a^2}.
  • Exponential/log: x=etx=e^t, t=lnxt=\ln x.

应用例子

例 1 01xex2dx=12(e1)\int_0^1 x e^{x^2} dx = \tfrac12(e-1) via u=x2u=x^2.
例 2 0111x2dx=0π/21dt=π2\int_0^1 \dfrac{1}{\sqrt{1-x^2}} dx = \int_0^{\pi/2}1\,dt=\tfrac{\pi}{2} using x=sintx=\sin t.
例 3 1e2lnxxdx=4\int_1^{e^2} \dfrac{\ln x}{\sqrt{x}}dx = 4 (substitution + parts as in steps).


练习题

练习 1

用换元法计算 01x1x2dx\int_0^1 \dfrac{x}{\sqrt{1-x^2}} dx

参考答案

思路u=1x2u=1-x^2
答案11

练习 2

用换元+分部积分求 1e2lnxxdx\int_1^{e^2} \dfrac{\ln x}{\sqrt{x}}\,dx

参考答案

答案44

练习 3

改编自2022考研数学一填空题

t=tanθt = \tan \theta,计算 0π/411+tan2θdθ\int_0^{\pi/4} \dfrac{1}{1+\tan^2 \theta}\,d\theta

参考答案

答案14+π8\dfrac{1}{4} + \dfrac{\pi}{8}


Summary

本文出现的符号

符号类型读音/说明在本文中的含义
φ\varphi希腊字母phi(fi)换元函数 x=φ(t)x=\varphi(t)
t,ut,u变量tee / yoo换元后的新变量
f(x)dx\int f(x)\,dx数学符号integral定积分

中英对照

中文术语英文术语音标说明
换元法substitution method/ˌsʌbstɪˈtjuːʃn ˈmɛθəd/变量替换化简定积分
被积函数integrand/ˈɪntɪɡrænd/积分号内的函数
积分限limits of integration/ˈlɪmɪts əv ˌɪntɪˈɡreɪʃn/上下限
三角换元trigonometric substitution/ˌtrɪɡəˈnɒmɪtrɪk ˌsʌbstɪˈtjuːʃn/用三角函数进行换元

搜索