导航菜单

Integral Mean Value Theorem

The integral mean value theorem connects an integral’s value with the function’s value at some point.

基本定理

定理 4

If f(x)f(x) is continuous on [a,b][a,b], then there exists ξ[a,b]\xi \in [a,b] such that

abf(x)dx=f(ξ)(ba)\int_a^b f(x) \, dx = f(\xi)(b-a)

Geometry: There is a rectangle with area equal to the curvilinear trapezoid; its height is f(ξ)f(\xi).

应用例子

f(x)=x2f(x)=x^2 on [0,1][0,1], find ξ\xi.
01x2dx=13=ξ2ξ=130.577\int_0^1 x^2 dx = \tfrac13 = \xi^2 \Rightarrow \xi=\tfrac{1}{\sqrt{3}}\approx 0.577.


练习题

练习 1

用积分中值定理求 f(x)=xf(x)=x[0,2][0,2]ξ\xi

参考答案

思路02xdx=2\int_0^2 x dx = 2,故 2=ξ22 = \xi \cdot 2ξ=1\xi=1
答案ξ=1\xi = 1


Summary

本文出现的符号

符号类型读音/说明在本文中的含义
ξ\xi希腊字母Xi(ksee)使矩形面积等于积分的点
\int数学符号integral定积分符号

中英对照

中文术语英文术语音标说明
积分中值定理integral mean value theorem/ˈɪntɪɡrəl miːn ˈvæljuː ˈθɪərəm/存在 ξ\xi 使积分等于 f(ξ)(ba)f(\xi)(b-a)

搜索