导航菜单

Typical Applications

Once you know the definition and derivative property, practice is key. These examples show how “differentiate an upper-limit integral” works in varied settings.

基本应用

例 1:F(x)=0xsintdtF(x) = \int_0^x \sin t \, dt,求 F(x)F'(x)

:By F(x)=f(x)F'(x)=f(x), we get F(x)=sinxF'(x) = \sin x.

例 2:F(x)=1x1tdtF(x) = \int_1^x \dfrac{1}{t} \, dt,求 F(x)F'(x)

:Treat f(t)=1tf(t)=\frac{1}{t}, so F(x)=1xF'(x) = \dfrac{1}{x}.

复杂应用

例 3:F(x)=0xet2dtF(x) = \int_0^x e^{-t^2} \, dt,求 F(x)F'(x)

F(x)=ex2F'(x) = e^{-x^2}. Even without an elementary antiderivative, the derivative is immediate.

例 4:F(x)=0xsinttdtF(x) = \int_0^x \dfrac{\sin t}{t} \, dt,求 F(x)F'(x)

F(x)=sinxxF'(x) = \dfrac{\sin x}{x}. As long as the integrand is meaningful at the upper limit, the derivative exists.

These examples highlight: the derivative of the upper-limit integral equals the integrand evaluated at the upper limit, regardless of how hard the integral itself is.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
F(x)F'(x)数学符号导数积分上限函数的导数,等于被积函数

中英对照

中文术语英文术语音标说明
积分上限函数upper-limit integral function/ˈʌpər ˈlɪmɪt ɪnˈtɛɡrəl ˈfʌŋkʃən/形如 F(x)=axf(t)dtF(x)=\int_a^x f(t)\,dt 的函数
被积函数integrand/ˈɪntəˌɡrænd/被积分号包围的函数 f(t)f(t)

搜索