导航菜单

Area View

The upper-limit integral function is an entry point to definite integrals. The best way to master it is to see the “area accumulation” intuition, then watch how the function changes as the upper limit moves.

从面积变化理解积分上限函数

场景:水库蓄水问题

Imagine a reservoir with inflow at a varying rate. Let f(t)f(t) be the inflow rate at time tt (m³/hour). The total stored water from 00 to xx is:

思考过程

  1. Instantaneous inflow at time tt is f(t)f(t)
  2. Over a tiny interval dtdt, inflow volume is approximately f(t)dtf(t)\cdot dt
  3. Total inflow from 00 to xx is 0xf(t)dt\int_0^x f(t)\,dt, which depends on xx:

F(x)=0xf(t)dtF(x) = \int_0^x f(t)\,dt

This is the upper-limit integral function: the accumulated area (or quantity) from the start up to xx.

基础可视化:面积累积过程

0/20

理解要点:

  • 每个矩形的高度等于该点的函数值 f(x)
  • 矩形的宽度是固定的步长
  • 所有矩形的面积之和近似等于积分值
  • 当步长越来越小时,近似值越来越精确
  • 积分上限函数 F(x) 的值等于从0到x的积分面积

高级可视化:积分上限函数的完整理解

关键观察点:

  • 当 x 增加时,积分面积(阴影区域)也在增加
  • 积分上限函数 F(x) 的值等于从0到x的积分面积
  • 导数 F'(x) 与原函数 f(x) 完全重合,验证了 F'(x) = f(x)
  • 这说明了积分上限函数是原函数的一个原函数

Observations from the interactive chart:

  1. Blue curve: original function f(x)=sin(x)+1f(x) = \sin(x) + 1 — the instantaneous rate.
  2. Green curve: upper-limit integral F(x)=0xf(t)dtF(x) = \int_0^x f(t)\,dt — the accumulated quantity.
  3. Blue shaded area: integral area from 00 to xx.
  4. Red dotted line: derivative F(x)F'(x), coinciding with f(x)f(x).

Key insight: the derivative of the upper-limit integral equals the integrand, i.e., F(x)=f(x)F'(x) = f(x).

更多生活化例子

例子 1:汽车行驶距离

  • f(t)f(t): instantaneous speed at time tt
  • F(x)=0xf(t)dtF(x) = \int_0^x f(t)\,dt: total distance from start to time xx
  • F(x)=f(x)F'(x) = f(x): derivative of distance is speed

例子 2:人口增长

  • f(t)f(t): population growth rate at time tt
  • F(x)=0xf(t)dtF(x) = \int_0^x f(t)\,dt: total population increase up to time xx
  • F(x)=f(x)F'(x) = f(x): derivative of total increase is the growth rate

例子 3:经济收入

  • f(t)f(t): income rate at time tt
  • F(x)=0xf(t)dtF(x) = \int_0^x f(t)\,dt: total income up to time xx
  • F(x)=f(x)F'(x) = f(x): derivative of total income is the income rate

All illustrate the same principle: the derivative of an accumulated quantity equals the instantaneous rate.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
F(x)F(x)数学符号积分上限函数累积量 0xf(t)dt\int_0^x f(t)\,dt
F(x)F'(x)数学符号导数积分上限函数的瞬时变化率

中英对照

中文术语英文术语音标说明
积分上限函数upper-limit integral function/ˈʌpər ˈlɪmɪt ɪnˈtɛɡrəl ˈfʌŋkʃən/形如 F(x)=axf(t)dtF(x)=\int_a^x f(t)\,dt 的函数
累积量accumulated quantity/əˈkjuːmjəˌleɪtɪd ˈkwɒntɪti/随上限累积的总量或面积
瞬时变化率instantaneous rate/ˌɪnstənˈteɪniəs reɪt/原函数 f(x)f(x) 表示的即时变化速度

搜索