导航菜单

Newton–Leibniz Formula

The upper-limit integral function is valuable because it offers a natural antiderivative candidate, linking definite integrals with differentiation—the essence of the Newton–Leibniz formula.

积分上限函数与牛顿-莱布尼茨公式

The upper-limit integral function underpins the formula:

  1. Construct an antiderivative: F(x)=axf(t)dtF(x) = \int_a^x f(t) \, dt is an antiderivative of f(x)f(x).
  2. Key fact: Any other antiderivative differs from F(x)F(x) by a constant.
  3. Thus: abf(x)dx=F(b)F(a)\int_a^b f(x) \, dx = F(b) - F(a).

总结与理解要点

1. 几何意义

  • F(x)=axf(t)dtF(x) = \int_a^x f(t) dt is the accumulated area from aa to xx.
  • As xx increases, the accumulated area grows.
  • F(x)F(x) equals the area under f(x)f(x) from aa to xx.

2. 微分关系

  • Core property: F(x)=f(x)F'(x) = f(x).
  • The derivative of the upper-limit integral equals the integrand.
  • This builds the bridge between integration and differentiation.

3. 原函数关系

  • The upper-limit integral is an antiderivative of the integrand.
  • Any antiderivative differs from it by a constant.
  • This is the key premise of the Newton–Leibniz formula.

4. 应用价值

  • Provides a route to compute definite integrals.
  • Connects to differential equations and cumulative quantities in physics.
  • Forms the theoretical basis of the Fundamental Theorem of Calculus.

总结

本文出现的符号

符号类型读音/说明在本文中的含义
ξ\xi希腊字母Xi(ksee)积分中值定理中位于区间 [x,x+h][x,x+h] 的取值点
\int数学符号Integral(积分符号)表示累积面积或累积量的定积分运算
F(x)F(x)函数符号Function(函数)积分上限函数,表示从下限到 xx 的累积面积

中英对照

中文术语英文术语音标说明
积分上限函数upper-limit integral function/ˈʌpər ˈlɪmɪt ɪnˈtɛɡrəl ˈfʌŋkʃən/xx 作为积分上限、描述累积面积的函数
变限积分variable-limit integral/ˈvɛəriəbəl ˈlɪmɪt ˈɪntɪɡrəl/上下限随 xx 变化的积分形式
积分中值定理mean value theorem for integrals/miːn ˈvæljuː ˈθɪərəm fɔːr ˈɪntɪɡrəlz/存在 ξ\xi 使积分等于函数值乘区间长度
累积量accumulated quantity/əˈkjuːmjəˌleɪtɪd ˈkwɒntɪti/由瞬时变化率积分得到的总量

搜索