Newton–Leibniz Formula
The upper-limit integral function is valuable because it offers a natural antiderivative candidate, linking definite integrals with differentiation—the essence of the Newton–Leibniz formula.
积分上限函数与牛顿-莱布尼茨公式
The upper-limit integral function underpins the formula:
- Construct an antiderivative: is an antiderivative of .
- Key fact: Any other antiderivative differs from by a constant.
- Thus: .
总结与理解要点
1. 几何意义
- is the accumulated area from to .
- As increases, the accumulated area grows.
- equals the area under from to .
2. 微分关系
- Core property: .
- The derivative of the upper-limit integral equals the integrand.
- This builds the bridge between integration and differentiation.
3. 原函数关系
- The upper-limit integral is an antiderivative of the integrand.
- Any antiderivative differs from it by a constant.
- This is the key premise of the Newton–Leibniz formula.
4. 应用价值
- Provides a route to compute definite integrals.
- Connects to differential equations and cumulative quantities in physics.
- Forms the theoretical basis of the Fundamental Theorem of Calculus.
总结
本文出现的符号
| 符号 | 类型 | 读音/说明 | 在本文中的含义 |
|---|---|---|---|
| 希腊字母 | Xi(ksee) | 积分中值定理中位于区间 的取值点 | |
| 数学符号 | Integral(积分符号) | 表示累积面积或累积量的定积分运算 | |
| 函数符号 | Function(函数) | 积分上限函数,表示从下限到 的累积面积 |
中英对照
| 中文术语 | 英文术语 | 音标 | 说明 |
|---|---|---|---|
| 积分上限函数 | upper-limit integral function | /ˈʌpər ˈlɪmɪt ɪnˈtɛɡrəl ˈfʌŋkʃən/ | 以 作为积分上限、描述累积面积的函数 |
| 变限积分 | variable-limit integral | /ˈvɛəriəbəl ˈlɪmɪt ˈɪntɪɡrəl/ | 上下限随 变化的积分形式 |
| 积分中值定理 | mean value theorem for integrals | /miːn ˈvæljuː ˈθɪərəm fɔːr ˈɪntɪɡrəlz/ | 存在 使积分等于函数值乘区间长度 |
| 累积量 | accumulated quantity | /əˈkjuːmjəˌleɪtɪd ˈkwɒntɪti/ | 由瞬时变化率积分得到的总量 |