When the limits of integration are themselves functions of x, use the variable-limit differentiation formula—this generalizes the upper-limit integral function.
变限积分
定理 2
Let f(x) be continuous on [a,b], and u(x),v(x) be differentiable on [c,d]. Then
dxd∫u(x)v(x)f(t)dt=f(v(x))⋅v′(x)−f(u(x))⋅u′(x)
Proof sketch: split the integral into two upper-limit integrals and apply the chain rule.
应用例子
例 1:F(x)=∫0x2sintdt,求 F′(x)
解:Upper limit v(x)=x2, so
F′(x)=sin(x2)⋅2x=2xsin(x2)
例 2:考研真题应用
Given f(x)=∫0xet2sintdt, g(x)=∫0xet2dt⋅sin2x, determine whether x=0 is an extremum or inflection point of f(x).
解:
Upper-limit derivative
f′(x)=ex2sinx
f′′(x)=2xex2sinx+ex2cosx
Check extremum
f′(0)=0
f′′(0)=1>0
结论:x=0 is a local minimum of f(x). This mirrors common exam tasks: differentiate the integral, then use higher derivatives to classify the point.