Infinitesimals
Infinitesimals are fundamental in limit theory and play a key role in limit computation.
定义
If , then is called an infinitesimal.
Mathematical wording: For any , there exists a such that when , we have .
(epsilon): Greek letter, read “epsilon”; represents an arbitrarily small positive number.
(delta): Greek letter, read “delta”; represents a positive number depending on .
Examples:
- As , , , and are infinitesimal.
- As , and are infinitesimal.
性质
- A finite sum of infinitesimals is still infinitesimal.
- A finite product of infinitesimals is still infinitesimal.
- The product of a bounded function and an infinitesimal is infinitesimal.
无穷小的比较
定义
Let , , and . Then:
- Higher-order infinitesimal: , written .
- Lower-order infinitesimal: , written .
- Same-order infinitesimal: , written .
- Equivalent infinitesimal: , written .
(alpha): Greek letter, read “alpha”; denotes an infinitesimal here.
(beta): Greek letter, read “beta”; denotes an infinitesimal here.
(gamma): Greek letter, read “gamma”; denotes an infinitesimal here.
: little-o notation, denotes a higher-order infinitesimal.
: big-O notation, denotes a same-order infinitesimal.
: equivalence symbol, denotes equivalent infinitesimals.
比较的例子
As :
- is a higher-order infinitesimal than : .
- is a lower-order infinitesimal than : .
- and are same-order infinitesimals: .
- and are equivalent infinitesimals: .
等价无穷小
定义
If , then and are equivalent infinitesimals, written .
重要性质
- Transitivity: If and , then .
- Symmetry: If , then .
- Substitution: Equivalent infinitesimals can replace each other when computing limits.
常用等价无穷小
When :
等价无穷小的应用
Substitution rule:When computing limits, replace complicated infinitesimals with simpler equivalent ones.
Examples:
无穷小的阶
定义
If , we say is an th-order infinitesimal.
例子
When :
- is a first-order infinitesimal.
- is a second-order infinitesimal.
- is a second-order infinitesimal (since ).
练习题
练习 1
Determine the relationship between and as .
Idea:Evaluate .
Steps:
- Because the limit is , is a higher-order infinitesimal than .
Answer: is higher order than .
练习 2
Use equivalent infinitesimals to find .
Idea:Apply equivalent infinitesimal substitutions.
Steps:
- As , and .
- But needs extra handling.
- As , , , and .
- Thus
- Therefore
Answer:The limit equals .
练习 3
Decide whether the sequence is an infinitesimal sequence.
Idea:Check whether .
Steps:
- Hence is an infinitesimal sequence.
Answer:It is an infinitesimal sequence.
总结
本文出现的符号
| 符号 | 类型 | 读音/说明 | 在本文中的含义 |
|---|---|---|---|
| 希腊字母 | Epsilon(伊普西隆) | Arbitrarily small positive number | |
| 希腊字母 | Delta(德尔塔) | Positive number depending on | |
| 希腊字母 | Alpha(阿尔法) | Denotes an infinitesimal | |
| 希腊字母 | Beta(贝塔) | Denotes an infinitesimal | |
| 希腊字母 | Gamma(伽马) | Denotes an infinitesimal | |
| 数学符号 | Little-o notation | Denotes a higher-order infinitesimal | |
| 数学符号 | Big-O notation | Denotes a same-order infinitesimal | |
| 数学符号 | Equivalence symbol | Denotes equivalent infinitesimals | |
| 数学符号 | Limit | Denotes the limit of a function or sequence | |
| 数学符号 | Tends to | Indicates approaching a value |
中英对照
| 中文术语 | 英文术语 | 音标 | 说明 |
|---|---|---|---|
| 无穷小 | infinitesimal | /ˌɪnfɪnɪˈtesɪməl/ | 极限为 0 的函数或数列 |
| 高阶无穷小 | higher order infinitesimal | /ˈhaɪə ˈɔːdə ˌɪnfɪnɪˈtesɪməl/ | 比另一个无穷小更快趋于 0 |
| 低阶无穷小 | lower order infinitesimal | /ˈləʊə ˈɔːdə ˌɪnfɪnɪˈtesɪməl/ | 比另一个无穷小更慢趋于 0 |
| 同阶无穷小 | same order infinitesimal | /seɪm ˈɔːdə ˌɪnfɪnɪˈtesɪməl/ | 两个无穷小的比值趋于非零常数 |
| 等价无穷小 | equivalent infinitesimal | /ɪˈkwɪvələnt ˌɪnfɪnɪˈtesɪməl/ | 两个无穷小的比值趋于 1 |
| 无穷小的阶 | order of infinitesimal | /ˈɔːdə əv ˌɪnfɪnɪˈtesɪməl/ | 无穷小与 的等价关系 |
| 小 o 记号 | little-o notation | /ˈlɪtəl əʊ nəʊˈteɪʃən/ | 表示高阶无穷小的记号 |
| 大 O 记号 | big-O notation | /bɪɡ əʊ nəʊˈteɪʃən/ | 表示同阶无穷小的记号 |
课程路线图
- 1
Exploring Functions in Advanced Mathematics
先修课程Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程 - 2
The World of Limits in Advanced Mathematics
当前课程Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程