导航菜单

Infinitesimals

Infinitesimals are fundamental in limit theory and play a key role in limit computation.

定义

Definition of an infinitesimal

If limf(x)=0\lim f(x) = 0, then f(x)f(x) is called an infinitesimal.

Mathematical wording: For any ε>0\varepsilon > 0, there exists a δ>0\delta > 0 such that when 0<xx0<δ0 < \vert x - x_0 \vert < \delta, we have f(x)<ε\vert f(x) \vert < \varepsilon.

Examples

  • As x0x \to 0, xx, x2x^2, and sinx\sin x are infinitesimal.
  • As nn \to \infty, 1n\frac{1}{n} and 1n2\frac{1}{n^2} are infinitesimal.

性质

  1. A finite sum of infinitesimals is still infinitesimal.
  2. A finite product of infinitesimals is still infinitesimal.
  3. The product of a bounded function and an infinitesimal is infinitesimal.

无穷小的比较

定义

Comparing infinitesimals

Let limα(x)=0\lim \alpha(x) = 0, limβ(x)=0\lim \beta(x) = 0, and β(x)0\beta(x) \neq 0. Then:

  1. Higher-order infinitesimal: limαβ=0\lim \frac{\alpha}{\beta} = 0, written α=o(β)\alpha = o(\beta).
  2. Lower-order infinitesimal: limαβ=\lim \frac{\alpha}{\beta} = \infty, written β=o(α)\beta = o(\alpha).
  3. Same-order infinitesimal: limαβ=C0\lim \frac{\alpha}{\beta} = C \neq 0, written α=O(β)\alpha = O(\beta).
  4. Equivalent infinitesimal: limαβ=1\lim \frac{\alpha}{\beta} = 1, written αβ\alpha \sim \beta.

比较的例子

As x0x \to 0:

  • x2x^2 is a higher-order infinitesimal than xx: limx2x=0\lim \frac{x^2}{x} = 0.
  • xx is a lower-order infinitesimal than x2x^2: limxx2=\lim \frac{x}{x^2} = \infty.
  • 2x2x and xx are same-order infinitesimals: lim2xx=2\lim \frac{2x}{x} = 2.
  • sinx\sin x and xx are equivalent infinitesimals: limsinxx=1\lim \frac{\sin x}{x} = 1.

等价无穷小

定义

Equivalent infinitesimals

If limαβ=1\lim \frac{\alpha}{\beta} = 1, then α\alpha and β\beta are equivalent infinitesimals, written αβ\alpha \sim \beta.

重要性质

  1. Transitivity: If αβ\alpha \sim \beta and βγ\beta \sim \gamma, then αγ\alpha \sim \gamma.
  2. Symmetry: If αβ\alpha \sim \beta, then βα\beta \sim \alpha.
  3. Substitution: Equivalent infinitesimals can replace each other when computing limits.

常用等价无穷小

When x0x \to 0:

  • sinxx\sin x \sim x
  • tanxx\tan x \sim x
  • arcsinxx\arcsin x \sim x
  • arctanxx\arctan x \sim x
  • 1cosxx221 - \cos x \sim \frac{x^2}{2}
  • ex1xe^x - 1 \sim x
  • ln(1+x)x\ln(1 + x) \sim x
  • (1+x)α1αx(1 + x)^\alpha - 1 \sim \alpha x

等价无穷小的应用

Substitution rule:When computing limits, replace complicated infinitesimals with simpler equivalent ones.

Examples

  • limx0sin3xx=limx03xx=3\lim_{x \to 0} \frac{\sin 3x}{x} = \lim_{x \to 0} \frac{3x}{x} = 3
  • limx01cosxx2=limx0x22x2=12\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\frac{x^2}{2}}{x^2} = \frac{1}{2}

无穷小的阶

定义

Order of an infinitesimal

If αxn\alpha \sim x^n, we say α\alpha is an nnth-order infinitesimal.

例子

When x0x \to 0:

  • xx is a first-order infinitesimal.
  • x2x^2 is a second-order infinitesimal.
  • 1cosx1 - \cos x is a second-order infinitesimal (since 1cosxx221 - \cos x \sim \frac{x^2}{2}).

练习题

练习 1

Determine the relationship between x3x^3 and x2x^2 as x0x \to 0.

参考答案

Idea:Evaluate limx0x3x2\lim_{x \to 0} \frac{x^3}{x^2}.

Steps

  1. limx0x3x2=limx0x=0\lim_{x \to 0} \frac{x^3}{x^2} = \lim_{x \to 0} x = 0
  2. Because the limit is 00, x3x^3 is a higher-order infinitesimal than x2x^2.

Answerx3x^3 is higher order than x2x^2.

练习 2

Use equivalent infinitesimals to find limx0tanxsinxx3\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}.

参考答案

Idea:Apply equivalent infinitesimal substitutions.

Steps

  1. As x0x \to 0, tanxx\tan x \sim x and sinxx\sin x \sim x.
  2. But tanxsinx\tan x - \sin x needs extra handling.
  3. tanxsinx=sinxcosxsinx=sinx(1cosx1)=sinx1cosxcosx\tan x - \sin x = \frac{\sin x}{\cos x} - \sin x = \sin x \left(\frac{1}{\cos x} - 1\right) = \sin x \cdot \frac{1 - \cos x}{\cos x}
  4. As x0x \to 0, sinxx\sin x \sim x, 1cosxx221 - \cos x \sim \frac{x^2}{2}, and cosx1\cos x \to 1.
  5. Thus tanxsinxxx22=x32\tan x - \sin x \sim x \cdot \frac{x^2}{2} = \frac{x^3}{2}
  6. Therefore limx0tanxsinxx3=limx0x32x3=12\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\frac{x^3}{2}}{x^3} = \frac{1}{2}

Answer:The limit equals 12\frac{1}{2}.

练习 3

Decide whether the sequence xn=1n2x_n = \frac{1}{n^2} is an infinitesimal sequence.

参考答案

Idea:Check whether limn1n2=0\lim_{n \to \infty} \frac{1}{n^2} = 0.

Steps

  1. limn1n2=0\lim_{n \to \infty} \frac{1}{n^2} = 0
  2. Hence xn=1n2x_n = \frac{1}{n^2} is an infinitesimal sequence.

Answer:It is an infinitesimal sequence.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
ε\varepsilon希腊字母Epsilon(伊普西隆)Arbitrarily small positive number
δ\delta希腊字母Delta(德尔塔)Positive number depending on ε\varepsilon
α\alpha希腊字母Alpha(阿尔法)Denotes an infinitesimal
β\beta希腊字母Beta(贝塔)Denotes an infinitesimal
γ\gamma希腊字母Gamma(伽马)Denotes an infinitesimal
o(β)o(\beta)数学符号Little-o notationDenotes a higher-order infinitesimal
O(β)O(\beta)数学符号Big-O notationDenotes a same-order infinitesimal
\sim数学符号Equivalence symbolDenotes equivalent infinitesimals
lim\lim数学符号LimitDenotes the limit of a function or sequence
\to数学符号Tends toIndicates approaching a value

中英对照

中文术语英文术语音标说明
无穷小infinitesimal/ˌɪnfɪnɪˈtesɪməl/极限为 0 的函数或数列
高阶无穷小higher order infinitesimal/ˈhaɪə ˈɔːdə ˌɪnfɪnɪˈtesɪməl/比另一个无穷小更快趋于 0
低阶无穷小lower order infinitesimal/ˈləʊə ˈɔːdə ˌɪnfɪnɪˈtesɪməl/比另一个无穷小更慢趋于 0
同阶无穷小same order infinitesimal/seɪm ˈɔːdə ˌɪnfɪnɪˈtesɪməl/两个无穷小的比值趋于非零常数
等价无穷小equivalent infinitesimal/ɪˈkwɪvələnt ˌɪnfɪnɪˈtesɪməl/两个无穷小的比值趋于 1
无穷小的阶order of infinitesimal/ˈɔːdə əv ˌɪnfɪnɪˈtesɪməl/无穷小与 xnx^n 的等价关系
小 o 记号little-o notation/ˈlɪtəl əʊ nəʊˈteɪʃən/表示高阶无穷小的记号
大 O 记号big-O notation/bɪɡ əʊ nəʊˈteɪʃən/表示同阶无穷小的记号

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    The World of Limits in Advanced Mathematics

    当前课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程

搜索