导航菜单

Infinity

Infinity is a key concept in limit theory and often appears in limit computation.

定义

Definition of infinity

If limf(x)=\lim f(x) = \infty, then f(x)f(x) is called infinite.

Mathematical wording: For any M>0M > 0, there exists a δ>0\delta > 0 such that when 0<xx0<δ0 < \vert x - x_0 \vert < \delta, we have f(x)>M\vert f(x) \vert > M.

Examples

  • As x0x \to 0, 1x\frac{1}{x} is infinite.
  • As xx \to \infty, xx, x2x^2, and exe^x are infinite.

无穷大的分类

  1. Positive infinity: limf(x)=+\lim f(x) = +\infty.
  2. Negative infinity: limf(x)=\lim f(x) = -\infty.
  3. Infinity (unsigned): limf(x)=\lim f(x) = \infty (includes both ++\infty and -\infty).

无穷小与无穷大的关系

基本关系

Relationship between infinitesimal and infinity

If limf(x)=\lim f(x) = \infty, then lim1f(x)=0\lim \frac{1}{f(x)} = 0

If limf(x)=0\lim f(x) = 0 and f(x)0f(x) \neq 0, then lim1f(x)=\lim \frac{1}{f(x)} = \infty

In the same process, if f(x)f(x) is infinite, then 1f(x)\frac{1}{f(x)} is infinitesimal; conversely, if f(x)f(x) is infinitesimal and f(x)0f(x) \neq 0, then 1f(x)\frac{1}{f(x)} is infinite.

例子

  • As x0x \to 0, xx is infinitesimal and 1x\frac{1}{x} is infinite.
  • As xx \to \infty, 1x\frac{1}{x} is infinitesimal and xx is infinite.

练习题

练习 1

Decide whether x2x^2 is infinite when xx \to \infty.

参考答案

Idea:Check limxx2\lim_{x \to \infty} x^2.

Steps

  1. For any M>0M > 0, choose δ=M\delta = \sqrt{M}.
  2. When x>δx > \delta, x2>Mx^2 > M.
  3. Therefore limxx2=\lim_{x \to \infty} x^2 = \infty.

Answerx2x^2 is infinite.

练习 2

When x0+x \to 0^+, is 1x2\frac{1}{x^2} positive infinity or negative infinity?

参考答案

Idea:Analyze the sign and the limit.

Steps

  1. As x0+x \to 0^+, x>0x > 0, so x2>0x^2 > 0.
  2. Hence 1x2>0\frac{1}{x^2} > 0.
  3. And limx0+1x2=+\lim_{x \to 0^+} \frac{1}{x^2} = +\infty.

Answer1x2\frac{1}{x^2} tends to ++\infty.

练习 3

Use the relationship between infinitesimals and infinities to judge whether 1x\frac{1}{x} is infinitesimal or infinite as xx \to \infty.

参考答案

Idea:Apply the relationship theorem.

Steps

  1. As xx \to \infty, xx is infinite.
  2. By the theorem, 1x\frac{1}{x} is infinitesimal.
  3. That is, limx1x=0\lim_{x \to \infty} \frac{1}{x} = 0.

Answer1x\frac{1}{x} is infinitesimal.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
MM数学符号Arbitrary large positive numberUsed to define infinity
δ\delta希腊字母Delta(德尔塔)Positive number depending on MM
lim\lim数学符号LimitDenotes the limit of a function or sequence
\to数学符号Tends toIndicates approaching a value
\infty数学符号InfinityRepresents infinity
++\infty数学符号Positive infinityRepresents positive infinity
-\infty数学符号Negative infinityRepresents negative infinity

中英对照

中文术语英文术语音标说明
无穷大infinity/ɪnˈfɪnɪti/极限为无穷大的函数或数列
正无穷大positive infinity/ˈpɒzətɪv ɪnˈfɪnɪti/极限为正无穷大
负无穷大negative infinity/ˈneɡətɪv ɪnˈfɪnɪti/极限为负无穷大
无穷小infinitesimal/ˌɪnfɪnɪˈtesɪməl/极限为 0 的函数或数列

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    The World of Limits in Advanced Mathematics

    当前课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程

搜索