导航菜单

积分的其他性质

这里列举一些其他重要的积分性质。

1. 积分区间可加性

定理 3

如果 f(x)f(x)[a,c][a, c] 上连续,b(a,c)b \in (a, c),则

acf(x)dx=abf(x)dx+bcf(x)dx\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx

2. 积分保号性

定理 4

如果 f(x)0f(x) \geq 0[a,b][a, b] 上成立,则 abf(x)dx0\int_a^b f(x) dx \geq 0

3. 积分中值定理

定理 5

如果 f(x)f(x)[a,b][a, b] 上连续,则存在 ξ[a,b]\xi \in [a, b],使得

abf(x)dx=f(ξ)(ba)\int_a^b f(x) dx = f(\xi)(b-a)

课程路线图

  1. 1

    高等数学之函数探秘

    先修课程

    函数是高等数学的核心概念,本系列文档系统介绍函数的基本概念、性质和应用。

    前往课程
  2. 2

    数列

    先修课程

    数列是高等数学的基石,本系列文档系统介绍数列的基本概念、性质、极限理论及其应用。

    前往课程
  3. 3

    高等数学之极限的世界

    先修课程

    极限是微积分的基础,也是高等数学中最重要的概念之一。

    前往课程
  4. 4

    高等数学之连续

    先修课程

    连续性知识点的完整学习指南,包含基本概念、间断点分类、初等函数连续性等。

    前往课程
  5. 5

    一元函数微分学

    先修课程

    一元函数微分学的完整学习指南,包含学习路径、核心概念、常见错误和学习建议。

    前往课程
  6. 6

    一元函数积分学

    当前课程

    学习不定积分与定积分的理论和计算,并应用于几何与物理问题。

    前往课程
下一站

数学考研大纲与真题

探索函数、极限、微积分等核心概念,为科学与工程领域奠定坚实的数学基础。

开始学习

搜索