logo
Probability and Mathematical Statistics

Numerical Characteristics of Random Variables

This chapter systematically studies the distribution of random variables, mathematical expectation, variance, covariance, correlation coefficient, and other numerical characteristics.

Random Variables and Distributions

  • Random variable: a variable whose value is uncertain
  • Probability law, distribution function

Mathematical Expectation

  • Discrete: E(X)=xiP(X=xi)E(X) = \sum x_i P(X=x_i)
  • Continuous: E(X)=+xf(x)dxE(X) = \int_{-\infty}^{+\infty} x f(x) dx
  • Properties: linearity, expectation of a constant, etc.

Variance and Standard Deviation

  • D(X)=E[(XE(X))2]D(X) = E[(X-E(X))^2]
  • σ=D(X)\sigma = \sqrt{D(X)}
  • Property: D(aX+b)=a2D(X)D(aX+b) = a^2 D(X)

Covariance and Correlation Coefficient

  • Covariance: Cov(X,Y)=E[(XE(X))(YE(Y))]Cov(X,Y) = E[(X-E(X))(Y-E(Y))]
  • Correlation coefficient: ρXY=Cov(X,Y)σXσY\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}

Exercises

  1. Given the probability law of XX: P(X=1)=0.2,P(X=2)=0.5,P(X=3)=0.3P(X=1)=0.2, P(X=2)=0.5, P(X=3)=0.3, find E(X)E(X).
  2. Given E(X)=2,D(X)=3E(X)=2, D(X)=3, find E(3X1)E(3X-1) and D(3X1)D(3X-1).
  3. Given X,YX, Y are independent, E(X)=1,E(Y)=2E(X)=1, E(Y)=2, find E(X+Y)E(X+Y).
  4. Given E(X)=1,E(Y)=2,Cov(X,Y)=3,σX=2,σY=1E(X)=1, E(Y)=2, Cov(X,Y)=3, \sigma_X=2, \sigma_Y=1, find ρXY\rho_{XY}.
  5. Given the distribution function F(x)={0,x<0x,0x<11,x1F(x)=\begin{cases} 0, x<0 \\ x, 0\leq x<1 \\ 1, x\geq1 \end{cases}, find E(X)E(X).
Reference Answers

1. E(X)E(X)

1×0.2+2×0.5+3×0.3=0.2+1+0.9=2.11\times0.2+2\times0.5+3\times0.3=0.2+1+0.9=2.1


2. E(3X1)E(3X-1) and D(3X1)D(3X-1)

E(3X1)=3E(X)1=3×21=5E(3X-1)=3E(X)-1=3\times2-1=5

D(3X1)=9D(X)=9×3=27D(3X-1)=9D(X)=9\times3=27


3. E(X+Y)E(X+Y)

E(X)+E(Y)=1+2=3E(X)+E(Y)=1+2=3


4. ρXY\rho_{XY}

32×1=1.5\frac{3}{2\times1}=1.5


5. E(X)E(X)

E(X)=01xdx=12E(X)=\int_0^1 x dx=\frac{1}{2}