导航菜单

Numerical Characteristics of Random Variables

This chapter systematically studies the distribution of random variables, mathematical expectation, variance, covariance, correlation coefficient, and other numerical characteristics.

Random Variables and Distributions

  • Random variable: a variable whose value is uncertain
  • Probability law, distribution function

Mathematical Expectation

  • Discrete: E(X)=xiP(X=xi)E(X) = \sum x_i P(X=x_i)
  • Continuous: E(X)=+xf(x)dxE(X) = \int_{-\infty}^{+\infty} x f(x) dx
  • Properties: linearity, expectation of a constant, etc.

Variance and Standard Deviation

  • D(X)=E[(XE(X))2]D(X) = E[(X-E(X))^2]
  • σ=D(X)\sigma = \sqrt{D(X)}
  • Property: D(aX+b)=a2D(X)D(aX+b) = a^2 D(X)

Covariance and Correlation Coefficient

  • Covariance: Cov(X,Y)=E[(XE(X))(YE(Y))]Cov(X,Y) = E[(X-E(X))(Y-E(Y))]
  • Correlation coefficient: ρXY=Cov(X,Y)σXσY\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}

Exercises

  1. Given the probability law of XX: P(X=1)=0.2,P(X=2)=0.5,P(X=3)=0.3P(X=1)=0.2, P(X=2)=0.5, P(X=3)=0.3, find E(X)E(X).
  2. Given E(X)=2,D(X)=3E(X)=2, D(X)=3, find E(3X1)E(3X-1) and D(3X1)D(3X-1).
  3. Given X,YX, Y are independent, E(X)=1,E(Y)=2E(X)=1, E(Y)=2, find E(X+Y)E(X+Y).
  4. Given E(X)=1,E(Y)=2,Cov(X,Y)=3,σX=2,σY=1E(X)=1, E(Y)=2, Cov(X,Y)=3, \sigma_X=2, \sigma_Y=1, find ρXY\rho_{XY}.
  5. Given the distribution function F(x)={0,x<0x,0x<11,x1F(x)=\begin{cases} 0, x<0 \\ x, 0\leq x<1 \\ 1, x\geq1 \end{cases}, find E(X)E(X).
Reference Answers

1. E(X)E(X)

1×0.2+2×0.5+3×0.3=0.2+1+0.9=2.11\times0.2+2\times0.5+3\times0.3=0.2+1+0.9=2.1


2. E(3X1)E(3X-1) and D(3X1)D(3X-1)

E(3X1)=3E(X)1=3×21=5E(3X-1)=3E(X)-1=3\times2-1=5

D(3X1)=9D(X)=9×3=27D(3X-1)=9D(X)=9\times3=27


3. E(X+Y)E(X+Y)

E(X)+E(Y)=1+2=3E(X)+E(Y)=1+2=3


4. ρXY\rho_{XY}

32×1=1.5\frac{3}{2\times1}=1.5


5. E(X)E(X)

E(X)=01xdx=12E(X)=\int_0^1 x dx=\frac{1}{2}

搜索