This chapter systematically studies the distribution of random variables, mathematical expectation, variance, covariance, correlation coefficient, and other numerical characteristics.
Random Variables and Distributions
Random variable: a variable whose value is uncertain
Probability law, distribution function
Mathematical Expectation
Discrete: E(X)=∑xiP(X=xi)
Continuous: E(X)=∫−∞+∞xf(x)dx
Properties: linearity, expectation of a constant, etc.
Variance and Standard Deviation
D(X)=E[(X−E(X))2]
σ=D(X)
Property: D(aX+b)=a2D(X)
Covariance and Correlation Coefficient
Covariance: Cov(X,Y)=E[(X−E(X))(Y−E(Y))]
Correlation coefficient: ρXY=σXσYCov(X,Y)
Exercises
Given the probability law of X: P(X=1)=0.2,P(X=2)=0.5,P(X=3)=0.3, find E(X).
Given E(X)=2,D(X)=3, find E(3X−1) and D(3X−1).
Given X,Y are independent, E(X)=1,E(Y)=2, find E(X+Y).
Given E(X)=1,E(Y)=2,Cov(X,Y)=3,σX=2,σY=1, find ρXY.
Given the distribution function F(x)=⎩⎨⎧0,x<0x,0≤x<11,x≥1, find E(X).