logo
Higher Mathematics

Limits

Limits

Limits are the soul of calculus, describing the behavior of a function near a point.

Definition and Properties of Limits

  • Function Limit: When xx approaches x0x_0, f(x)f(x) approaches AA, denoted as limxx0f(x)=A\lim_{x \to x_0} f(x) = A.
  • Sequence Limit: When nn approaches infinity, xnx_n approaches AA, denoted as limnxn=A\lim_{n \to \infty} x_n = A.
  • Left and Right Limits: limxx0f(x)\lim_{x \to x_0^-} f(x) and limxx0+f(x)\lim_{x \to x_0^+} f(x). The limit of f(x)f(x) at x0x_0 exists if and only if both the left and right limits exist and are equal.
  • Properties of Limits: Uniqueness, boundedness, sign-preserving property.

Infinitesimals and Infinities

  • Infinitesimal: If limf(x)=0\lim f(x) = 0, then f(x)f(x) is called an infinitesimal.
  • Infinity: If limf(x)=\lim f(x) = \infty, then f(x)f(x) is called infinite.
  • Relationship: In the same process, if f(x)f(x) is infinite, then 1/f(x)1/f(x) is infinitesimal; conversely, if f(x)f(x) is infinitesimal and f(x)0f(x) \neq 0, then 1/f(x)1/f(x) is infinite.
  • Comparison of Infinitesimals: Let limα(x)=0\lim \alpha(x) = 0, limβ(x)=0\lim \beta(x) = 0
    • Higher-order infinitesimal: limαβ=0\lim \frac{\alpha}{\beta} = 0
    • Lower-order infinitesimal: limαβ=\lim \frac{\alpha}{\beta} = \infty
    • Same-order infinitesimal: limαβ=C0\lim \frac{\alpha}{\beta} = C \neq 0
    • Equivalent infinitesimal: limαβ=1\lim \frac{\alpha}{\beta} = 1, denoted as αβ\alpha \sim \beta. Using equivalent infinitesimals is an important method for calculating limits.

Calculation Rules for Limits

If limf(x)=A\lim f(x) = A, limg(x)=B\lim g(x) = B, then:

  1. lim[f(x)±g(x)]=A±B\lim [f(x) \pm g(x)] = A \pm B
  2. lim[f(x)g(x)]=AB\lim [f(x) \cdot g(x)] = A \cdot B
  3. limf(x)g(x)=AB\lim \frac{f(x)}{g(x)} = \frac{A}{B} (where B0B \neq 0)

Criteria for the Existence of Limits and Two Important Limits

Criteria

  1. Squeeze Theorem: If in a neighborhood of a point, g(x)f(x)h(x)g(x) \leq f(x) \leq h(x) always holds, and limg(x)=limh(x)=A\lim g(x) = \lim h(x) = A, then limf(x)=A\lim f(x) = A.
  2. Monotone Bounded Theorem: A monotone bounded sequence must have a limit.

Two Important Limits

limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1

limx(1+1x)x=e\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e

Common Equivalent Infinitesimals

As x0x \to 0:

  • sinxx\sin x \sim x
  • tanxx\tan x \sim x
  • arcsinxx\arcsin x \sim x
  • arctanxx\arctan x \sim x
  • 1cosxx221 - \cos x \sim \frac{x^2}{2}
  • ex1xe^x - 1 \sim x
  • ln(1+x)x\ln(1 + x) \sim x
  • (1+x)α1αx(1 + x)^\alpha - 1 \sim \alpha x

These equivalent infinitesimals are very useful for calculating limits and can greatly simplify the process.


Exercises

  1. Calculate the limit limx0sin3xx\lim\limits_{x \to 0} \frac{\sin 3x}{x}.
  2. Determine whether the sequence xn=1nx_n = \frac{1}{n} is an infinitesimal sequence.
  3. Use equivalent infinitesimals to calculate the limit limx01cosxx2\lim\limits_{x \to 0} \frac{1 - \cos x}{x^2}.
  4. Calculate the limit limx(1+2x)x\lim\limits_{x \to \infty} \left(1 + \frac{2}{x}\right)^x.
  5. Determine the limit of f(x)=1xf(x) = \frac{1}{x} as x0+x \to 0^+, and state whether it is infinite or infinitesimal.
Reference Answers

1. Calculate limx0sin3xx\lim\limits_{x \to 0} \frac{\sin 3x}{x}

Solution: sin3xx=3sin3x3x\frac{\sin 3x}{x} = 3 \cdot \frac{\sin 3x}{3x}, as x0x \to 0, sin3x3x1\frac{\sin 3x}{3x} \to 1.

Answer: The limit is 33.


2. Is xn=1nx_n = \frac{1}{n} an infinitesimal sequence?

Solution: limn1n=0\lim\limits_{n \to \infty} \frac{1}{n} = 0.

Answer: Yes, it is an infinitesimal sequence.


3. Use equivalent infinitesimals to calculate limx01cosxx2\lim\limits_{x \to 0} \frac{1 - \cos x}{x^2}

Solution: 1cosxx221 - \cos x \sim \frac{x^2}{2}, so the limit x22x2=12\approx \frac{\frac{x^2}{2}}{x^2} = \frac{1}{2}.

Answer: The limit is 12\frac{1}{2}.


4. Calculate limx(1+2x)x\lim\limits_{x \to \infty} \left(1 + \frac{2}{x}\right)^x

Solution: Use the important limit limx(1+ax)x=ea\lim\limits_{x \to \infty} \left(1 + \frac{a}{x}\right)^x = e^a. Here a=2a = 2, so the limit is e2e^2.

Answer: The limit is e2e^2.


5. Determine the limit of f(x)=1xf(x) = \frac{1}{x} as x0+x \to 0^+, and state whether it is infinite or infinitesimal

Solution: As x0+x \to 0^+, f(x)=1x+f(x) = \frac{1}{x} \to +\infty, which is infinite.

Answer: The limit does not exist (tends to ++\infty), it is infinite.