logo
Linear Algebra

Matrices

This chapter systematically studies the basic concepts, operations, properties, elementary transformations, inverse matrices, adjugate matrices, and rank of matrices.

Definition and Types of Matrices

  • m×nm \times n matrix: A=(aij)m×nA = (a_{ij})_{m \times n}
  • Square matrix, zero matrix, identity matrix, diagonal matrix, symmetric matrix, skew-symmetric matrix

Matrix Operations

  • Addition, scalar multiplication: add corresponding elements of matrices of the same type, scalar multiplication multiplies each element
  • Multiplication: Am×nBn×pA_{m \times n} B_{n \times p}, Cij=k=1naikbkjC_{ij} = \sum_{k=1}^n a_{ik}b_{kj}
  • Transpose: ATA^T

Properties of Matrices

  • Addition and scalar multiplication satisfy commutative, associative, and distributive laws
  • Multiplication satisfies associative and distributive laws, but not commutative law
  • (AB)T=BTAT(AB)^T = B^T A^T
  • (AT)T=A(A^T)^T = A

Inverse and Adjugate Matrices

  • Inverse matrix: AA1=A1A=IAA^{-1} = A^{-1}A = I
  • Invertibility condition: A0|A| \neq 0
  • Adjugate matrix: A=(Aji)A^* = (A_{ji}), A1=1AAA^{-1} = \frac{1}{|A|}A^*

Elementary Transformations and Elementary Matrices

  • Elementary row (column) transformations: swap, add multiple, scalar multiplication
  • Elementary matrix: obtained by performing an elementary transformation on the identity matrix
  • One-to-one correspondence between elementary matrices and elementary transformations

Rank and Equivalence of Matrices

  • Rank: the maximum number of linearly independent rows (or columns)
  • Equivalence: can be transformed into each other by a finite number of elementary transformations
  • Block matrices and their operations

Exercises

  1. Determine the types of the following matrices: A=(1001)A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B=(0220)B = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}.
  2. Compute A+BA + B, where A=(1234)A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B=(4321)B = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}.
  3. Compute ABAB, A=(1201)A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, B=(2013)B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}.
  4. Determine whether A=(1234)A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} is invertible. If so, find A1A^{-1}.
  5. Find the adjugate matrix of A=(1234)A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.
  6. Write the elementary matrix that swaps the first and second rows of A=(1234)A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.
  7. Find the rank of A=(123246)A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{pmatrix}.
Reference Answers

1. Determine the types of the following matrices

AA: 2×22 \times 2 identity matrix, symmetric matrix; BB: 2×22 \times 2 symmetric matrix


2. Compute A+BA + B

(1+42+33+24+1)=(5555)\begin{pmatrix} 1+4 & 2+3 \\ 3+2 & 4+1 \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}


3. Compute ABAB

(1201)(2013)=(1×2+2×11×0+2×30×2+1×10×0+1×3)=(4613)\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 1\times2+2\times1 & 1\times0+2\times3 \\ 0\times2+1\times1 & 0\times0+1\times3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 1 & 3 \end{pmatrix}


4. Determine whether AA is invertible. If so, find A1A^{-1}

A=1×42×3=46=20|A| = 1\times4 - 2\times3 = 4-6 = -2 \neq 0, so it is invertible.

A1=12(4231)=(211.50.5)A^{-1} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 1.5 & -0.5 \end{pmatrix}


5. Find the adjugate matrix of AA

A=(4321)A^* = \begin{pmatrix} 4 & -3 \\ -2 & 1 \end{pmatrix}


6. Write the elementary matrix that swaps the first and second rows of AA

E=(0110)E = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}


7. Find the rank of AA

The two rows are proportional, so the rank is 1.