logo
Linear Algebra

Quadratic Forms

This chapter systematically studies the definition, matrix representation, canonical form, positive definiteness, and congruence transformation of quadratic forms.

Definition and Matrix Representation of Quadratic Forms

  • Quadratic form: Q(x)=aijxixjQ(x) = \sum a_{ij}x_ix_j
  • Matrix representation: Q(x)=xTAxQ(x) = x^T A x

Congruence Transformation and Canonical Form

  • Congruence transformation: B=PTAPB = P^TAP
  • Canonical form: Q(x)=λ1y12+λ2y22++λnyn2Q(x) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2
  • Inertia theorem

Positive Definiteness

  • Positive definite quadratic form: Q(x)>0Q(x) > 0 (for all nonzero xx)
  • Criterion: all leading principal minors are positive

Exercises

  1. Write the matrix representation of the quadratic form Q(x1,x2)=2x12+4x1x2+3x22Q(x_1,x_2) = 2x_1^2 + 4x_1x_2 + 3x_2^2.
  2. Diagonalize Q(x1,x2)=2x12+4x1x2+3x22Q(x_1,x_2) = 2x_1^2 + 4x_1x_2 + 3x_2^2 by an orthogonal transformation.
  3. Determine whether the quadratic form Q(x1,x2)=x12+2x22Q(x_1,x_2) = x_1^2 + 2x_2^2 is positive definite.
  4. State the inertia theorem.
  5. Determine whether A=(2112)A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} is positive definite.
Reference Answers

1. Matrix representation

A=(2223)A = \begin{pmatrix} 2 & 2 \\ 2 & 3 \end{pmatrix}


2. Orthogonal transformation to canonical form

Eigenvalues 1,41,4, canonical form y12+4y22y_1^2 + 4y_2^2


3. Positive definiteness

Leading principal minors 1>0,2>01>0, 2>0, so it is positive definite.


4. Inertia theorem

Congruence transformation does not change the number of positive and negative inertia indices.


5. Is AA positive definite?

Leading principal minors 2>0,3>02>0, 3>0, so it is positive definite.