logo
Linear Algebra

Eigenvalues and Eigenvectors

This chapter systematically studies the eigenvalues and eigenvectors of matrices, similarity, diagonalization, and properties of real symmetric matrices.

Definition of Eigenvalues and Eigenvectors

  • Ax=λxA\vec{x} = \lambda \vec{x}
  • AλI=0|A - \lambda I| = 0 is the characteristic equation

Properties and Computation

  • An nn-order matrix has nn eigenvalues (counting multiplicities)
  • Eigenvectors corresponding to different eigenvalues are linearly independent
  • Eigenvectors corresponding to different eigenvalues are linearly independent

Similarity and Diagonalization

  • Similarity: B=P1APB = P^{-1}AP
  • Diagonalizability condition: there are nn linearly independent eigenvectors
  • Real symmetric matrices can be orthogonally diagonalized

Exercises

  1. Find the eigenvalues and eigenvectors of A=(2112)A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.
  2. Determine whether A=(1101)A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} is diagonalizable.
  3. If AA has eigenvalues 1,2,31,2,3, write A|A| and trA\operatorname{tr}A.
  4. Determine whether A=(0110)A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} is a real symmetric matrix, and whether all its eigenvalues are real.
  5. If AA is diagonalizable, write its diagonalization form.
Reference Answers

1. Eigenvalues and eigenvectors

AλI=(2λ)21=λ24λ+3=0|A - \lambda I| = (2-\lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = 0, λ=1,3\lambda=1,3

For λ=1\lambda=1, x=(1,1)\vec{x} = (1,-1); for λ=3\lambda=3, x=(1,1)\vec{x} = (1,1)


2. Diagonalizability

There is only one eigenvector, so it is not diagonalizable.


3. A|A| and trA\operatorname{tr}A

A=1×2×3=6|A| = 1\times2\times3 = 6, trA=1+2+3=6\operatorname{tr}A = 1+2+3=6


4. Real symmetry and eigenvalues

AA is a real symmetric matrix, eigenvalues are 1,11,-1, both real.


5. Diagonalization form

A=PDP1A = PDP^{-1}, DD is a diagonal matrix, PP is the matrix of eigenvectors.