导航菜单

Basic Concepts of Limits

Limits are the soul of calculus. They describe how a function behaves near a point and form the bedrock for learning calculus.

极限的定义

函数极限

Definition of a function limit

When xx approaches x0x_0, f(x)f(x) approaches AA, denoted as:

limxx0f(x)=A\lim_{x \to x_0} f(x) = A

Mathematical wording: For any ε>0\varepsilon > 0, there exists a δ>0\delta > 0 such that whenever 0<xx0<δ0 < \lvert x - x_0 \rvert < \delta, we have f(x)A<ε\lvert f(x) - A \rvert < \varepsilon.

Geometric meaning: Near x0x_0, the graph of f(x)f(x) squeezes toward the horizontal line y=Ay = A.

数列极限

Definition of a sequence limit

When nn approaches infinity, xnx_n approaches AA, denoted as:

limnxn=A\lim_{n \to \infty} x_n = A

Mathematical wording: For any ε>0\varepsilon > 0, there exists an integer NN such that when n>Nn > N, we have xnA<ε\lvert x_n - A \rvert < \varepsilon.

Examples

  • limn1n=0\lim_{n \to \infty} \frac{1}{n} = 0
  • limn(1+1n)n=e\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e

左极限与右极限

左极限

Left-hand limit

When xx approaches x0x_0 from the left, the limit of f(x)f(x) is written as:

limxx0f(x)\lim_{x \to x_0^-} f(x)

Mathematical wording: For any ε>0\varepsilon > 0, there exists a δ>0\delta > 0 such that whenever x0δ<x<x0x_0 - \delta < x < x_0, we have f(x)A<ε\lvert f(x) - A \rvert < \varepsilon.

右极限

Right-hand limit

When xx approaches x0x_0 from the right, the limit of f(x)f(x) is written as:

limxx0+f(x)\lim_{x \to x_0^+} f(x)

Mathematical wording: For any ε>0\varepsilon > 0, there exists a δ>0\delta > 0 such that whenever x0<x<x0+δx_0 < x < x_0 + \delta, we have f(x)A<ε\lvert f(x) - A \rvert < \varepsilon.

极限存在的充要条件

Theorem: The limit of f(x)f(x) exists at x0x_0 if and only if its left-hand and right-hand limits both exist and are equal.

Criterion for the existence of a limit

limxx0f(x)=Alimxx0f(x)=limxx0+f(x)=A\lim_{x \to x_0} f(x) = A \Leftrightarrow \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = A

Examples

  • For f(x)=xxf(x) = \frac{|x|}{x} at x=0x = 0, the left-hand limit is 1-1 and the right-hand limit is 11, so the limit does not exist.

极限的性质

唯一性

Property: If the limit exists, it is unique.

Proof idea: Assume limxx0f(x)=A\lim_{x \to x_0} f(x) = A and limxx0f(x)=B\lim_{x \to x_0} f(x) = B; then A=BA = B.

有界性

Property: If limxx0f(x)=A\lim_{x \to x_0} f(x) = A, then there is a neighborhood of x0x_0 on which f(x)f(x) is bounded.

Corollary: If a function has a limit at a point, it must be bounded in some neighborhood of that point.

保号性

Property: If limxx0f(x)=A>0\lim_{x \to x_0} f(x) = A > 0, then there is a neighborhood of x0x_0 where f(x)>0f(x) > 0.

Corollary: If limxx0f(x)=A<0\lim_{x \to x_0} f(x) = A < 0, then there is a neighborhood of x0x_0 where f(x)<0f(x) < 0.

极限的几何解释

函数极限的几何意义

  • As xx gets arbitrarily close to x0x_0, f(x)f(x) gets arbitrarily close to the constant AA.
  • The graph near x0x_0 clusters around the line y=Ay = A.
  • From either side of x0x_0, f(x)f(x) tends to the same value.

数列极限的几何意义

  • Points of the sequence on the number line get arbitrarily close to AA.
  • Beyond some term, all points fall inside any neighborhood of AA.
  • The “tail” of the sequence gets closer and closer to its limit.

练习题

练习 1

Determine whether the limit of f(x)=x21x1f(x) = \frac{x^2 - 1}{x - 1} exists at x=1x = 1.

参考答案

Idea: Compute left-hand and right-hand limits and see if they are equal.

Steps

  1. Right-hand limit: limx1+x21x1=limx1+(x1)(x+1)x1=limx1+(x+1)=2\lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1^+} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1^+} (x+1) = 2
  2. Left-hand limit: limx1x21x1=limx1(x1)(x+1)x1=limx1(x+1)=2\lim_{x \to 1^-} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1^-} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1^-} (x+1) = 2
  3. Since the left-hand and right-hand limits match, the limit exists.

Answer:The limit exists and equals 22.

练习 2

Prove that the sequence xn=nn+1x_n = \frac{n}{n+1} has limit 11.

参考答案

Idea: Use the definition of a limit: for any ε>0\varepsilon > 0, find NN such that xn1<ε|x_n - 1| < \varepsilon for n>Nn > N.

Steps

  1. xn1=nn+11=n(n+1)n+1=1n+1|x_n - 1| = \left|\frac{n}{n+1} - 1\right| = \left|\frac{n-(n+1)}{n+1}\right| = \frac{1}{n+1}
  2. To make 1n+1<ε\frac{1}{n+1} < \varepsilon, we need n+1>1εn+1 > \frac{1}{\varepsilon}, i.e., n>1ε1n > \frac{1}{\varepsilon} - 1
  3. Let N=1ε1+1N = \left\lfloor \frac{1}{\varepsilon} - 1 \right\rfloor + 1; then for n>Nn > N, xn1<ε|x_n - 1| < \varepsilon

Answer:The sequence limit is 11.

练习 3

Determine whether the limit of f(x)=1xf(x) = \frac{1}{x} exists at x=0x = 0.

参考答案

Idea: Compute left-hand and right-hand limits.

Steps

  1. Right-hand limit: limx0+1x=+\lim_{x \to 0^+} \frac{1}{x} = +\infty
  2. Left-hand limit: limx01x=\lim_{x \to 0^-} \frac{1}{x} = -\infty
  3. Since they differ, the limit does not exist.

Answer:The limit does not exist.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
ε\varepsilon希腊字母Epsilon(伊普西隆)Arbitrarily small positive number
δ\delta希腊字母Delta(德尔塔)Positive number depending on ε\varepsilon
NN数学符号Positive integerA sufficiently large positive integer
lim\lim数学符号LimitDenotes the limit of a function or sequence
\to数学符号Tends toIndicates approaching a value
\infty数学符号InfinityRepresents infinity
xx0\vert x - x_0 \vert数学符号Absolute valueDistance between xx and x0x_0

中英对照

中文术语英文术语音标说明
极限limit/ˈlɪmɪt/函数或数列在某个点或无穷远处的极限值
函数极限limit of a function/ˈlɪmɪt əv ə ˈfʌŋkʃən/函数在某点的极限
数列极限limit of a sequence/ˈlɪmɪt əv ə ˈsiːkwəns/数列在无穷远处的极限
左极限left-hand limit/left hænd ˈlɪmɪt/从左侧趋向于某点的极限
右极限right-hand limit/raɪt hænd ˈlɪmɪt/从右侧趋向于某点的极限
唯一性uniqueness/juːˈniːknəs/极限值唯一的性质
有界性boundedness/ˈbaʊndɪdnəs/函数在邻域内有界的性质
保号性sign preservation/saɪn ˌprezəˈveɪʃən/极限值符号在邻域内保持不变
邻域neighborhood/ˈneɪbəhʊd/某点附近的区间
充要条件necessary and sufficient condition/nɪˈsesəri ənd səˈfɪʃənt kənˈdɪʃən/既是必要条件又是充分条件

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    The World of Limits in Advanced Mathematics

    当前课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程

搜索