左右极限法
对于分段函数,可以分别计算左右极限。
判定原则
函数 f ( x ) f(x) f ( x ) 在 x 0 x_0 x 0 点连续,当且仅当:
lim x → x 0 − f ( x ) = lim x → x 0 + f ( x ) = f ( x 0 ) \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0) lim x → x 0 − f ( x ) = lim x → x 0 + f ( x ) = f ( x 0 )
判定步骤
计算左极限 :lim x → x 0 − f ( x ) \lim_{x \to x_0^-} f(x) lim x → x 0 − f ( x )
计算右极限 :lim x → x 0 + f ( x ) \lim_{x \to x_0^+} f(x) lim x → x 0 + f ( x )
计算函数值 :f ( x 0 ) f(x_0) f ( x 0 )
比较三者 :如果三者相等,则连续;否则不连续
应用例子
例子 1 :判断函数 f ( x ) = { x 2 , x ≤ 1 2 x − 1 , x > 1 f(x) = \begin{cases} x^2, & x \leq 1 \\ 2x - 1, & x > 1 \end{cases} f ( x ) = { x 2 , 2 x − 1 , x ≤ 1 x > 1 在 x = 1 x = 1 x = 1 处的连续性
解 :
左极限:lim x → 1 − f ( x ) = lim x → 1 − x 2 = 1 \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x^2 = 1 lim x → 1 − f ( x ) = lim x → 1 − x 2 = 1
右极限:lim x → 1 + f ( x ) = lim x → 1 + ( 2 x − 1 ) = 1 \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2x - 1) = 1 lim x → 1 + f ( x ) = lim x → 1 + ( 2 x − 1 ) = 1
函数值:f ( 1 ) = 1 2 = 1 f(1) = 1^2 = 1 f ( 1 ) = 1 2 = 1
三者相等
结论:函数在 x = 1 x = 1 x = 1 处连续
例子 2 :判断函数 f ( x ) = { x , x < 0 x + 1 , x ≥ 0 f(x) = \begin{cases} x, & x < 0 \\ x + 1, & x \geq 0 \end{cases} f ( x ) = { x , x + 1 , x < 0 x ≥ 0 在 x = 0 x = 0 x = 0 处的连续性
解 :
左极限:lim x → 0 − f ( x ) = 0 \lim_{x \to 0^-} f(x) = 0 lim x → 0 − f ( x ) = 0
右极限:lim x → 0 + f ( x ) = 1 \lim_{x \to 0^+} f(x) = 1 lim x → 0 + f ( x ) = 1
函数值:f ( 0 ) = 1 f(0) = 1 f ( 0 ) = 1
左极限 ≠ 右极限
结论:函数在 x = 0 x = 0 x = 0 处不连续
练习题
练习 1
使用左右极限法判断 f ( x ) = { x 2 , x < 0 x + 1 , x ≥ 0 f(x) = \begin{cases} x^2, & x < 0 \\ x + 1, & x \geq 0 \end{cases} f ( x ) = { x 2 , x + 1 , x < 0 x ≥ 0 在 x = 0 x = 0 x = 0 处的连续性。
参考答案
解题思路 :分别计算左右极限并比较。
详细步骤 :
左极限:lim x → 0 − f ( x ) = 0 \lim_{x \to 0^-} f(x) = 0 lim x → 0 − f ( x ) = 0
右极限:lim x → 0 + f ( x ) = 1 \lim_{x \to 0^+} f(x) = 1 lim x → 0 + f ( x ) = 1
函数值:f ( 0 ) = 1 f(0) = 1 f ( 0 ) = 1
左极限 ≠ 右极限
答案 :函数在 x = 0 x = 0 x = 0 处不连续。
1 Exploring Functions in Advanced Mathematics
先修课程
Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程
2 Continuity in Advanced Calculus
当前课程
A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.
前往课程