导航菜单

Elementary Functions at a Glance

Elementary functions are the building blocks of most formulas you will see in calculus and its applications.

Power Functions

Power function

f(x)=xaf(x) = x^a where aa is a real number.

  • If aa is an integer, the domain is R\mathbb{R}.
  • If aa is rational with even denominator, restrict to keep roots real (e.g., x1/2x^{1/2} needs x0x \ge 0).
  • a>1a > 1: grows faster; a=1a = 1: line; 0<a<10 < a < 1: concave, passes (0,0)(0,0).
  • Negative aa yields reciprocals (e.g., x1=1xx^{-1} = \dfrac{1}{x}, domain excludes 00).

Exponential Functions

Exponential function

f(x)=axf(x) = a^x with a>0a > 0, a1a \ne 1. Domain: R\mathbb{R}; Range: (0,+)(0, +\infty).

  • Increasing if a>1a>1, decreasing if 0<a<10<a<1.
  • Always positive, crosses (0,1)(0,1).

Logarithmic Functions

Logarithmic function

f(x)=logaxf(x) = \log_a x with a>0a > 0, a1a \ne 1. Domain: (0,+)(0, +\infty); Range: R\mathbb{R}.

  • Inverse of axa^x; passes (1,0)(1,0).
  • Increasing if a>1a>1, decreasing if 0<a<10<a<1.

Trigonometric Functions

  • sinx\sin x, cosx\cos x are bounded in [1,1][-1,1] with period 2π2\pi.
  • tanx\tan x, cotx\cot x have period π\pi and vertical asymptotes.
  • sin\sin is odd, cos\cos is even; phase shifts create other shapes.

Inverse Trigonometric Functions

  • arcsinx\arcsin x: domain [1,1][-1,1], range [π2,π2]\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]
  • arccosx\arccos x: domain [1,1][-1,1], range [0,π][0, \pi]
  • arctanx\arctan x: domain R\mathbb{R}, range (π2,π2)\left(-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right)

练习题

练习 1

State the domain and monotonicity of f(x)=x1/2f(x) = x^{1/2}.

参考答案

Domain: [0,+)[0, +\infty). Increasing on its domain.

练习 2

Compare growth: which grows faster as x+x \to +\infty, x3x^3 or 2x2^x?

参考答案

Exponential 2x2^x eventually outgrows any power x3x^3; limx+2xx3=+\lim_{x\to+\infty}\dfrac{2^x}{x^3} = +\infty.

练习 3

Give one even and one odd trigonometric function with their periods.

参考答案

Even: cosx\cos x, period 2π2\pi.
Odd: sinx\sin x, period 2π2\pi.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
xax^a数学符号x to the a幂函数表达式
axa^x数学符号a to the x指数函数
logax\log_a x数学符号log base a of x对数函数
π\pi希腊字母Pi(派)三角函数的周期常数
arcsinx\arcsin x数学符号arc-sine of x反三角函数
arctanx\arctan x数学符号arc-tangent of x反三角函数

中英对照

中文术语英文术语音标说明
幂函数power function/ˈpaʊər ˈfʌŋkʃən/形如 xax^a 的函数
指数函数exponential function/ˌɛkspəˈnɛnʃəl ˈfʌŋkʃən/底数固定、指数为自变量的函数
对数函数logarithmic function/ˌlɒɡəˈrɪðmɪk ˈfʌŋkʃən/指数函数的反函数
三角函数trigonometric function/ˌtrɪɡənəˈmɛtrɪk ˈfʌŋkʃən/以角度/弧度为自变量的周期函数
反三角函数inverse trigonometric function/ɪnˈvɜːs ˌtrɪɡənəˈmɛtrɪk ˈfʌŋkʃən/求角度的三角函数逆运算
周期period/ˈpɪəriəd/三角函数重复的最小正间隔

Chapters

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    当前课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
进阶推荐

The World of Limits in Advanced Mathematics

Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

开始学习
进阶推荐

Sequences

Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

开始学习

搜索