导航菜单

Irrational (Radical) Functions

Radical expressions often encode geometric lengths and appear in limits, derivatives, and integrals.

Definition

Irrational (radical) function

f(x)=g(x)nf(x) = \sqrt[n]{g(x)} where nn is a positive integer and g(x)g(x) is another function.

  • Even nn: require g(x)0g(x) \ge 0 for real outputs.
  • Odd nn: domain may be all real numbers.

Typical Shapes

  • f(x)=xf(x) = \sqrt{x}: domain [0,+)[0,+\infty), increasing, concave down.
  • f(x)=4x2f(x) = \sqrt{4 - x^2}: domain [2,2][-2,2], upper semicircle.
  • f(x)=x3f(x) = \sqrt[3]{x}: domain R\mathbb{R}, odd symmetry.

Techniques

  • Rationalization: multiply by conjugates to simplify limits or equations.
  • Domain checks: combine conditions when radicals appear in fractions.
  • Composition: g(x)\sqrt{g(x)} inherits domain constraints from gg.

练习题

练习 1

Find the domain of f(x)=x1x3f(x) = \dfrac{\sqrt{x-1}}{x-3}.

参考答案

x10x-1 \ge 0x1x \ge 1; also x3x \ne 3.
Domain: [1,3)(3,+)[1,3) \cup (3,+\infty).

练习 2

Solve x+5=x1\sqrt{x+5} = x - 1 in R\mathbb{R}.

参考答案

Require x10x-1 \ge 0x1x \ge 1. Square both sides: x+5=(x1)2=x22x+1x + 5 = (x-1)^2 = x^2 - 2x + 1
x23x4=0x^2 - 3x - 4 = 0(x4)(x+1)=0(x-4)(x+1)=0 ⇒ candidates x=4x=4 or x=1x=-1.
Check domain: only x=4x=4 is valid.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
g(x)n\sqrt[n]{g(x)}数学符号n-th root of g of x根式函数的一般形式
[a,b][a,b]数学符号closed interval a b定义域示例的区间表示
R\mathbb{R}数学符号Real numbers讨论的数集

中英对照

中文术语英文术语音标说明
无理函数irrational function/ɪˈræʃənəl ˈfʌŋkʃən/含根号的函数形式
根式函数radical function/ˈrædɪkəl ˈfʌŋkʃən/以根号表示的函数
定义域domain/dəʊˈmeɪn/使根号有意义的自变量集合
有效解valid solution/ˈvælɪd səˈluːʃən/满足原方程和定义域的解

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    当前课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
进阶推荐

The World of Limits in Advanced Mathematics

Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

开始学习
进阶推荐

Sequences

Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

开始学习

搜索