Irrational (Radical) Functions
Radical expressions often encode geometric lengths and appear in limits, derivatives, and integrals.
域的提醒:偶次根号下的表达式必须非负;奇次根可以接受任意实数。
Definition
Irrational (radical) function
where is a positive integer and is another function.
- Even : require for real outputs.
- Odd : domain may be all real numbers.
Typical Shapes
- : domain , increasing, concave down.
- : domain , upper semicircle.
- : domain , odd symmetry.
Techniques
- Rationalization: multiply by conjugates to simplify limits or equations.
- Domain checks: combine conditions when radicals appear in fractions.
- Composition: inherits domain constraints from .
练习题
练习 1
Find the domain of .
参考答案
⇒ ; also .
Domain: .
练习 2
Solve in .
参考答案
Require ⇒ . Square both sides:
⇒ ⇒ ⇒ candidates or .
Check domain: only is valid.
总结
本文出现的符号
| 符号 | 类型 | 读音/说明 | 在本文中的含义 |
|---|---|---|---|
| 数学符号 | n-th root of g of x | 根式函数的一般形式 | |
| 数学符号 | closed interval a b | 定义域示例的区间表示 | |
| 数学符号 | Real numbers | 讨论的数集 |
中英对照
| 中文术语 | 英文术语 | 音标 | 说明 |
|---|---|---|---|
| 无理函数 | irrational function | /ɪˈræʃənəl ˈfʌŋkʃən/ | 含根号的函数形式 |
| 根式函数 | radical function | /ˈrædɪkəl ˈfʌŋkʃən/ | 以根号表示的函数 |
| 定义域 | domain | /dəʊˈmeɪn/ | 使根号有意义的自变量集合 |
| 有效解 | valid solution | /ˈvælɪd səˈluːʃən/ | 满足原方程和定义域的解 |
课程路线图
- 1
Exploring Functions in Advanced Mathematics
当前课程Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程