导航菜单

Basic Concepts of Functions

Functions describe how one quantity depends on another. Mastering the definition, how to represent a function, and how to read its domain and range will unlock every later topic in calculus.

What Is a Function?

Definition of a Function

Let xx and yy be two variables. If every xx in some set DD is paired with exactly one yy, then yy is called a function of xx, written y=f(x)y = f(x). Here xx is the independent variable, yy is the dependent variable, and DD is the domain.

Ways to Represent Functions

Analytical (formula) form

  • Example: f(x)=x2+1f(x) = x^2 + 1
  • Pros: precise, easy to compute and analyze.
  • Cons: complex or piecewise relationships may need multiple formulas.

Table form

List sample inputs and outputs.

xx-1012
f(x)=x2f(x) = x^21014

Graph form

  • Plot (x,f(x))(x, f(x)) in the plane.
  • Great for spotting monotonicity, extrema, intercepts, and symmetry.
  • Less precise for exact numeric values.

Domain and Range

Domain and Range
  • Domain D(f)D(f): all xx values that make f(x)f(x) meaningful.
  • Range (image) R(f)R(f): all possible function values f(x)f(x) when xD(f)x \in D(f).

Finding a domain quickly

  • Fraction: denominator 0\neq 0 (e.g., f(x)=1x2f(x) = \frac{1}{x-2}x2x \neq 2).
  • Even root: radicand 0\ge 0 (e.g., 4x2\sqrt{4-x^2}2x2-2 \le x \le 2).
  • Logarithm: argument >0> 0 (e.g., ln(x+3)\ln(x+3)x>3x > -3).
  • Combined constraints: satisfy all at once (e.g., x1x3\frac{\sqrt{x-1}}{x-3}x1x \ge 1 and x3x \neq 3).

Describing domains

  • Interval: (,2)(2,+)(-\infty, 2) \cup (2, +\infty)
  • Set builder: {xx1,x3}\{x \mid x \ge 1, x \neq 3\}
  • Inequalities: x1x \ge 1 and x3x \neq 3

Typical ranges

  • Power function x2x^2: [0,+)[0, +\infty)
  • Exponential axa^x (a>1a>1): (0,+)(0, +\infty)
  • Logarithm logax\log_a x (a>1a>1): R\mathbb{R}
  • Sine and cosine: [1,1][-1, 1]

Common Classifications

Monotonicity

  • Increasing: x1<x2f(x1)f(x2)x_1 < x_2 \Rightarrow f(x_1) \le f(x_2) on an interval.
  • Decreasing: x1<x2f(x1)f(x2)x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2) on an interval.

Parity (even/odd)

  • Domain must be symmetric about the origin.
  • Even: f(x)=f(x)f(-x) = f(x) ⇒ graph symmetric about the yy-axis.
  • Odd: f(x)=f(x)f(-x) = -f(x) ⇒ graph symmetric about the origin.

Periodicity

  • If T0\exists T \neq 0 such that f(x+T)=f(x)f(x + T) = f(x) for all xx in the domain, ff is periodic. The smallest positive TT is the fundamental period.
  • Examples: sinx\sin x (T=2πT = 2\pi), tanx\tan x (T=πT = \pi).

Boundedness

  • ff is bounded on DD if M\exists M with f(x)M|f(x)| \le M for all xDx \in D.
  • sinx\sin x is bounded; x2x^2 is unbounded on R\mathbb{R} but bounded on [1,1][-1,1].

Building New Functions

  • Composite function: if y=f(u)y = f(u) and u=g(x)u = g(x), then y=f(g(x))y = f(g(x)).
  • Inverse function: if ff is one-to-one on DD, then f1f^{-1} exists and satisfies f(f1(y))=yf(f^{-1}(y)) = y.
  • Piecewise function: different formulas on different intervals (e.g., absolute value).

练习题

练习 1

Find the domain of f(x)=14x2+ln(x)f(x) = \dfrac{1}{\sqrt{4 - x^2}} + \ln(x).

参考答案
  1. 14x2\dfrac{1}{\sqrt{4 - x^2}} requires 4x2>04 - x^2 > 02<x<2-2 < x < 2.
  2. ln(x)\ln(x) requires x>0x > 0.
  3. Intersection: (0,2)(0, 2).

练习 2

Determine whether f(x)=ln ⁣(1x1+x)f(x) = \ln\!\left(\dfrac{1 - x}{1 + x}\right) is even, odd, or neither.

参考答案

The domain (1,1)(-1, 1) is symmetric. Compute f(x)=ln ⁣(1+x1x)=ln ⁣(1x1+x)=f(x)f(-x) = \ln\!\left(\dfrac{1 + x}{1 - x}\right) = -\ln\!\left(\dfrac{1 - x}{1 + x}\right) = -f(x).
So ff is odd.

练习 3

Give one example each of an increasing, decreasing, even, and periodic function.

参考答案
  • Increasing: f(x)=xf(x) = x on R\mathbb{R}
  • Decreasing: f(x)=xf(x) = -x on R\mathbb{R}
  • Even: f(x)=x2f(x) = x^2 on R\mathbb{R}
  • Periodic: f(x)=sinxf(x) = \sin x with period 2π2\pi

总结

本文出现的符号

符号类型读音/说明在本文中的含义
f(x)f(x)数学符号f of xxx 为自变量的函数
D(f)D(f)数学符号domain of f函数的定义域
R(f)R(f)数学符号range of f函数的值域
R\mathbb{R}数学符号Real numbers全体实数集合
TT数学符号T周期函数的周期

中英对照

中文术语英文术语音标说明
定义域domain/dəʊˈmeɪn/使函数有意义的自变量取值集合
值域range/reɪndʒ/函数可能取到的输出集合
单调递增monotonically increasing/ˌmɒnəʊˈtɒnɪkli ɪnˈkriːsɪŋ/随自变量增大而不减小
单调递减monotonically decreasing/ˌmɒnəʊˈtɒnɪkli dɪˈkriːsɪŋ/随自变量增大而不增大
偶函数even function/ˈiːvn ˈfʌŋkʃən/满足 f(x)=f(x)f(-x)=f(x) 的函数
奇函数odd function/ɒd ˈfʌŋkʃən/满足 f(x)=f(x)f(-x)=-f(x) 的函数
周期函数periodic function/ˌpɪərɪˈɒdɪk ˈfʌŋkʃən/以固定周期重复的函数
有界函数bounded function/ˈbaʊndɪd ˈfʌŋkʃən/存在统一界 MM 满足 $

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    当前课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
进阶推荐

The World of Limits in Advanced Mathematics

Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

开始学习
进阶推荐

Sequences

Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

开始学习

搜索