Basic Concepts of Functions
Functions describe how one quantity depends on another. Mastering the definition, how to represent a function, and how to read its domain and range will unlock every later topic in calculus.
What Is a Function?
Let and be two variables. If every in some set is paired with exactly one , then is called a function of , written . Here is the independent variable, is the dependent variable, and is the domain.
(双线体 R,Real numbers):表示全体实数集合,是最常见的定义域背景。
Ways to Represent Functions
Analytical (formula) form
- Example:
- Pros: precise, easy to compute and analyze.
- Cons: complex or piecewise relationships may need multiple formulas.
Table form
List sample inputs and outputs.
| -1 | 0 | 1 | 2 | |
|---|---|---|---|---|
| 1 | 0 | 1 | 4 |
Graph form
- Plot in the plane.
- Great for spotting monotonicity, extrema, intercepts, and symmetry.
- Less precise for exact numeric values.
Domain and Range
- Domain : all values that make meaningful.
- Range (image) : all possible function values when .
Finding a domain quickly
- Fraction: denominator (e.g., ⇒ ).
- Even root: radicand (e.g., ⇒ ).
- Logarithm: argument (e.g., ⇒ ).
- Combined constraints: satisfy all at once (e.g., ⇒ and ).
Describing domains
- Interval:
- Set builder:
- Inequalities: and
Typical ranges
- Power function :
- Exponential ():
- Logarithm ():
- Sine and cosine:
Common Classifications
Monotonicity
- Increasing: on an interval.
- Decreasing: on an interval.
Parity (even/odd)
- Domain must be symmetric about the origin.
- Even: ⇒ graph symmetric about the -axis.
- Odd: ⇒ graph symmetric about the origin.
Periodicity
- If such that for all in the domain, is periodic. The smallest positive is the fundamental period.
- Examples: (), ().
Boundedness
- is bounded on if with for all .
- is bounded; is unbounded on but bounded on .
Building New Functions
- Composite function: if and , then .
- Inverse function: if is one-to-one on , then exists and satisfies .
- Piecewise function: different formulas on different intervals (e.g., absolute value).
练习题
练习 1
Find the domain of .
- requires ⇒ .
- requires .
- Intersection: .
练习 2
Determine whether is even, odd, or neither.
The domain is symmetric. Compute .
So is odd.
练习 3
Give one example each of an increasing, decreasing, even, and periodic function.
- Increasing: on
- Decreasing: on
- Even: on
- Periodic: with period
总结
本文出现的符号
| 符号 | 类型 | 读音/说明 | 在本文中的含义 |
|---|---|---|---|
| 数学符号 | f of x | 以 为自变量的函数 | |
| 数学符号 | domain of f | 函数的定义域 | |
| 数学符号 | range of f | 函数的值域 | |
| 数学符号 | Real numbers | 全体实数集合 | |
| 数学符号 | T | 周期函数的周期 |
中英对照
| 中文术语 | 英文术语 | 音标 | 说明 |
|---|---|---|---|
| 定义域 | domain | /dəʊˈmeɪn/ | 使函数有意义的自变量取值集合 |
| 值域 | range | /reɪndʒ/ | 函数可能取到的输出集合 |
| 单调递增 | monotonically increasing | /ˌmɒnəʊˈtɒnɪkli ɪnˈkriːsɪŋ/ | 随自变量增大而不减小 |
| 单调递减 | monotonically decreasing | /ˌmɒnəʊˈtɒnɪkli dɪˈkriːsɪŋ/ | 随自变量增大而不增大 |
| 偶函数 | even function | /ˈiːvn ˈfʌŋkʃən/ | 满足 的函数 |
| 奇函数 | odd function | /ɒd ˈfʌŋkʃən/ | 满足 的函数 |
| 周期函数 | periodic function | /ˌpɪərɪˈɒdɪk ˈfʌŋkʃən/ | 以固定周期重复的函数 |
| 有界函数 | bounded function | /ˈbaʊndɪd ˈfʌŋkʃən/ | 存在统一界 满足 $ |
课程路线图
- 1
Exploring Functions in Advanced Mathematics
当前课程Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程