导航菜单

The Golden Ratio

The golden ratio φ\varphi shows up in geometry, art, and nature—earning a reputation as the “most pleasing” proportion.

Definition

Golden ratio

Split a segment into aa (long) and bb (short). If a+ba=ab=φ\dfrac{a+b}{a} = \dfrac{a}{b} = \varphi, the common value is the golden ratio.

Let x=abx = \dfrac{a}{b}. From x+1x=x\dfrac{x+1}{x} = x we obtain x2=x+1x^2 = x + 1, so

φ=1+52.\varphi = \frac{1+\sqrt{5}}{2}.

Algebraic Properties

  • φ\varphi is irrational.
  • Reciprocal: 1φ=φ1\dfrac{1}{\varphi} = \varphi - 1.
  • Square: φ2=φ+1\varphi^2 = \varphi + 1.

Fibonacci Connection

The Fibonacci sequence 1,1,2,3,5,8,1,1,2,3,5,8,\dots satisfies

Fn=φn(1φ)n5,Fn+1Fnφ.F_n = \frac{\varphi^n - (1-\varphi)^n}{\sqrt{5}}, \quad \frac{F_{n+1}}{F_n} \to \varphi.

练习题

练习 1

Write the exact value of φ\varphi and its defining equation.

参考答案

φ=1+52\varphi = \dfrac{1+\sqrt{5}}{2}, it satisfies x2=x+1x^2 = x + 1.

练习 2

Show that 1φ=φ1\dfrac{1}{\varphi} = \varphi - 1.

参考答案

From φ2=φ+1\varphi^2 = \varphi + 1, divide both sides by φ\varphi: φ=1+1φ\varphi = 1 + \dfrac{1}{\varphi}1φ=φ1\dfrac{1}{\varphi} = \varphi - 1.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
φ\varphi希腊字母Phi(费/菲)黄金比例
FnF_n数学符号F sub n斐波那契数列的第 nn
5\sqrt{5}数学符号square root of five出现在精确表达式中的根号

中英对照

中文术语英文术语音标说明
黄金比例golden ratio/ˈɡəʊldən ˈreɪʃiəʊ/满足 a+ba=ab\dfrac{a+b}{a} = \dfrac{a}{b} 的比例
黄金分割golden section/ˈɡəʊldən ˈsekʃən/与黄金比例同义
斐波那契数列Fibonacci sequence/fɪbəˈnɑːtʃi ˈsiːkwəns/邻项比趋向黄金比例的数列
无理数irrational number/ɪˈræʃənəl ˈnʌmbə/不能表示为整数比的实数

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    当前课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
进阶推荐

The World of Limits in Advanced Mathematics

Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

开始学习
进阶推荐

Sequences

Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

开始学习

搜索