导航菜单

Rational Functions

Rational functions connect algebra and analysis, showing up in limits, integration, and partial fractions.

Definition

Rational function

f(x)=P(x)Q(x)f(x) = \dfrac{P(x)}{Q(x)} where P(x)P(x) and Q(x)Q(x) are polynomials and Q(x)0Q(x) \neq 0.

  • Domain: all xx such that Q(x)0Q(x) \neq 0.
  • Zeros: solutions of P(x)=0P(x) = 0 that are not canceled by Q(x)Q(x).
  • Poles (vertical asymptotes): zeros of Q(x)Q(x) that are not canceled by P(x)P(x).

Quick Analysis Checklist

  • Domain: exclude roots of Q(x)Q(x).
  • Intercepts: f(0)f(0) if defined; solve P(x)=0P(x)=0 for xx-intercepts.
  • Asymptotes:
    • Vertical: Q(x)=0Q(x)=0 (after simplification).
    • Horizontal/oblique: compare degrees of PP and QQ; long divide if degPdegQ\deg P \ge \deg Q.
  • End behavior: leading terms decide the growth and sign at infinity.

Examples

  • f(x)=1x2f(x) = \dfrac{1}{x-2}: domain x2x \neq 2; vertical asymptote x=2x=2; horizontal asymptote y=0y=0.
  • f(x)=x21x1f(x) = \dfrac{x^2-1}{x-1} simplifies to x+1x+1 except at x=1x=1 (removable hole).

练习题

练习 1

Find the domain and vertical asymptote of f(x)=2x+3x24f(x) = \dfrac{2x+3}{x^2-4}.

参考答案

x24=(x2)(x+2)x^2-4 = (x-2)(x+2) ⇒ domain excludes ±2\pm2.
Vertical asymptotes at x=2x = -2 and x=2x = 2.

练习 2

Determine the horizontal or oblique asymptote of f(x)=x2+1x1f(x) = \dfrac{x^2 + 1}{x - 1}.

参考答案

Long divide: x2+1=(x1)(x+1)+2x^2 + 1 = (x-1)(x+1) + 2.
So f(x)=x+1+2x1f(x) = x + 1 + \dfrac{2}{x-1} ⇒ oblique asymptote y=x+1y = x + 1.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
P(x),Q(x)P(x), Q(x)数学符号P of x, Q of x分子与分母多项式
degP\deg P数学符号degree of P多项式的次数
R\mathbb{R}数学符号Real numbers讨论的数集
x=ax= a数学符号x equals a竖直渐近线位置

中英对照

中文术语英文术语音标说明
有理函数rational function/ˈræʃənəl ˈfʌŋkʃən/多项式比值形成的函数
定义域domain/dəʊˈmeɪn/使分母不为零的所有 xx
渐近线asymptote/ˈæsɪmptəʊt/函数无限接近但不相交的直线
垂直渐近线vertical asymptote/ˈvɜːtɪkl ˈæsɪmptəʊt/分母为零处的竖直线
斜渐近线oblique asymptote/əˈbliːk ˈæsɪmptəʊt/长除法得到的斜线趋势

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    当前课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
进阶推荐

The World of Limits in Advanced Mathematics

Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

开始学习
进阶推荐

Sequences

Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

开始学习

搜索