导航菜单

Special Function Forms

Not all functions are given by one simple formula. These five special forms appear everywhere in analysis and applications.

Composite Functions

Composite function

If u=g(x)u = g(x) and y=f(u)y = f(u), then y=f(g(x))y = f(g(x)) is the composite of ff and gg.
Domain: all xx such that xD(g)x \in D(g) and g(x)D(f)g(x) \in D(f).

Example: f(u)=euf(u) = e^u, g(x)=x2+1g(x) = x^2 + 1f(g(x))=ex2+1f(g(x)) = e^{x^2+1}.

Inverse Functions

Inverse function

If ff is one-to-one on DD, the inverse f1f^{-1} satisfies f(f1(y))=yf(f^{-1}(y)) = y and f1(f(x))=xf^{-1}(f(x)) = x.

  • Graphs of ff and f1f^{-1} are symmetric about y=xy = x.
  • Monotonicity is preserved: if ff is strictly increasing, so is f1f^{-1}.

Piecewise Functions

  • Different expressions on different intervals.
  • Pay attention to continuity at the breakpoints.
  • Example: absolute value f(x)={x,x0x,x<0f(x) = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}.

Implicit Functions

  • Relation given by F(x,y)=0F(x, y) = 0 instead of y=f(x)y = f(x) explicitly.
  • Under mild conditions, the implicit function theorem guarantees a local function y=φ(x)y = \varphi(x).
  • Example: circle x2+y21=0x^2 + y^2 - 1 = 0y=±1x2y = \pm\sqrt{1 - x^2}.

Parametric Functions

  • Both variables expressed via a parameter tt: (x(t),y(t))(x(t), y(t)).
  • Great for curves that are hard to describe explicitly (cycloids, Lissajous curves).
  • Tangent slope: dydx=y(t)x(t)\dfrac{dy}{dx} = \dfrac{y'(t)}{x'(t)} when x(t)0x'(t) \neq 0.

练习题

练习 1

Given f(x)=2x+3f(x) = \sqrt{2x+3} and g(x)=x21g(x) = x^2 - 1, write f(g(x))f(g(x)) and find its domain.

参考答案

f(g(x))=2(x21)+3=2x2+1f(g(x)) = \sqrt{2(x^2 - 1) + 3} = \sqrt{2x^2 + 1}.
Need 2x2+102x^2 + 1 \ge 0, always true ⇒ domain R\mathbb{R}.

练习 2

Find the inverse of y=e2x+1y = e^{2x} + 1 and its domain.

参考答案

y1=e2xln(y1)=2xx=12ln(y1)y - 1 = e^{2x} \Rightarrow \ln(y-1) = 2x \Rightarrow x = \tfrac{1}{2}\ln(y-1).
Swap x,yx, y: y=12ln(x1)y = \tfrac{1}{2}\ln(x-1) with domain (1,+)(1, +\infty).

练习 3

For the parametric curve x=costx = \cos t, y=sinty = \sin t, compute dydx\dfrac{dy}{dx}.

参考答案

x(t)=sintx'(t) = -\sin t, y(t)=costy'(t) = \cos tdydx=costsint=cott\dfrac{dy}{dx} = \dfrac{\cos t}{-\sin t} = -\cot t (when sint0\sin t \neq 0).


总结

本文出现的符号

符号类型读音/说明在本文中的含义
f(g(x))f(g(x))数学符号f of g of x复合函数
f1(x)f^{-1}(x)数学符号f inverse of x反函数
F(x,y)=0F(x, y)=0数学符号F of x y equals zero隐函数关系
(x(t),y(t))(x(t), y(t))数学符号x of t, y of t参数方程
dydx\dfrac{dy}{dx}数学符号dy over dx斜率或导数
R\mathbb{R}数学符号Real numbers全体实数集合

中英对照

中文术语英文术语音标说明
复合函数composite function/kəmˈpɒzɪt ˈfʌŋkʃən/通过嵌套得到的新函数
反函数inverse function/ɪnˈvɜːs ˈfʌŋkʃən/将输出映回输入的函数
分段函数piecewise function/ˈpiːswaɪz ˈfʌŋkʃən/不同区间使用不同表达式
隐函数implicit function/ɪmˈplɪsɪt ˈfʌŋkʃən/由方程关系确定的函数
参数方程parametric equation/ˌpærəˈmɛtrɪk ɪˈkweɪʒən/用参数描述曲线的方程
周期参数parameter/pəˈræmɪtər/描述曲线位置的变量

Chapters

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    当前课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
进阶推荐

The World of Limits in Advanced Mathematics

Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

开始学习
进阶推荐

Sequences

Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

开始学习

搜索