导航菜单

Properties of Functions

Understanding properties lets you sketch graphs, solve inequalities, and invert functions with confidence.

Monotonicity

Monotonicity on an interval

Let f(x)f(x) be defined on interval II.

  • Strictly increasing: x1<x2f(x1)<f(x2)x_1 < x_2 \Rightarrow f(x_1) < f(x_2) for all x1,x2Ix_1, x_2 \in I.
  • Strictly decreasing: x1<x2f(x1)>f(x2)x_1 < x_2 \Rightarrow f(x_1) > f(x_2) for all x1,x2Ix_1, x_2 \in I.
  • Geometric view: increasing curves go up left-to-right; decreasing go down.
  • Derivative test (when differentiable): f(x)>0f'(x) > 0 ⇒ strictly increasing; f(x)<0f'(x) < 0 ⇒ strictly decreasing.

Boundedness

  • ff is bounded on II if M\exists M with f(x)M|f(x)| \le M for all xIx \in I.
  • Example: sinx\sin x is bounded by 1 on R\mathbb{R}; x2x^2 is bounded on [1,1][-1,1] by 1.

Extrema

  • Local maximum at x0x_0: there is a neighborhood where f(x)f(x0)f(x) \le f(x_0).
  • Local minimum: f(x)f(x0)f(x) \ge f(x_0) nearby.
  • Typical derivative test: f(x0)=0f'(x_0) = 0 and sign of ff' changes from + to – (max) or – to + (min).

Parity

  • Domain must be symmetric about the origin.
  • Even: f(x)=f(x)f(-x) = f(x) ⇒ symmetric about the yy-axis (e.g., x2x^2, cosx\cos x).
  • Odd: f(x)=f(x)f(-x) = -f(x) ⇒ symmetric about the origin (e.g., x3x^3, sinx\sin x).

Periodicity

  • ff is periodic if T0\exists T \neq 0 with f(x+T)=f(x)f(x+T) = f(x) for all xx.
  • Smallest positive TT is the fundamental period.
  • Examples: sinx\sin x period 2π2\pi; tanx\tan x period π\pi.

Convexity and Inflection

  • Convex (concave up) on II: the line segment between any two points on the graph lies above the curve; analytically f(x)0f''(x) \ge 0 (when it exists).
  • Concave (concave down): f(x)0f''(x) \le 0.
  • Inflection point: where curvature changes sign (typically ff'' changes sign).

练习题

练习 1

Determine where f(x)=x33x+1f(x) = x^3 - 3x + 1 is increasing or decreasing.

参考答案

f(x)=3x23=3(x1)(x+1)f'(x) = 3x^2 - 3 = 3(x-1)(x+1)

  • x<1x < -1: f(x)>0f'(x) > 0 ⇒ increasing
  • 1<x<1-1 < x < 1: f(x)<0f'(x) < 0 ⇒ decreasing
  • x>1x > 1: f(x)>0f'(x) > 0 ⇒ increasing

练习 2

Is f(x)=ln ⁣(1+x1x)f(x) = \ln\!\left(\dfrac{1+x}{1-x}\right) odd or even on (1,1)(-1,1)?

参考答案

Domain is symmetric. f(x)=ln ⁣(1x1+x)=ln ⁣(1+x1x)=f(x)f(-x) = \ln\!\left(\dfrac{1 - x}{1 + x}\right) = -\ln\!\left(\dfrac{1 + x}{1 - x}\right) = -f(x), so ff is odd.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
f(x)f(x)数学符号f of x研究的函数
II数学符号interval讨论性质的区间
f(x)f'(x)数学符号f prime of x函数的一阶导数
f(x)f''(x)数学符号f double prime of x函数的二阶导数
TT数学符号T周期
R\mathbb{R}数学符号Real numbers全体实数集合

中英对照

中文术语英文术语音标说明
单调性monotonicity/ˌmɒnəʊtəˈnɪsɪti/函数随自变量变化的增减趋势
有界性boundedness/ˈbaʊndɪdnəs/函数值被统一常数所约束
极大值local maximum/ˈləʊkl ˈmæksɪməm/在邻域内函数值最大的点
极小值local minimum/ˈləʊkl ˈmɪnɪməm/在邻域内函数值最小的点
奇函数odd function/ɒd ˈfʌŋkʃən/满足 f(x)=f(x)f(-x)=-f(x) 的函数
偶函数even function/ˈiːvn ˈfʌŋkʃən/满足 f(x)=f(x)f(-x)=f(x) 的函数
周期性periodicity/ˌpɪərɪəˈdɪsəti/函数值按固定周期重复
凸性convexity/kɒnˈvɛksəti/函数曲线向上弯曲(f0f''\ge0
拐点inflection point/ɪnˈflɛkʃən pɔɪnt/曲率符号发生变化的点

Chapters

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    当前课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
进阶推荐

The World of Limits in Advanced Mathematics

Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

开始学习
进阶推荐

Sequences

Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

开始学习

搜索