导航菜单

Comprehensive Exercises

These problems reinforce core skills: derivative definitions, rule fluency, composite and implicit cases, mean value theorems, L’Hôpital’s rule, and applications such as extrema and curvature.


基础概念

练习 1

Find f(1)f'(1) for f(x)=x2+2x+1f(x) = x^2 + 2x + 1.

参考答案

f(x)=2x+2f'(x) = 2x + 2, so f(1)=4f'(1) = 4. (Using the limit definition yields the same result.)

练习 2

Check continuity and differentiability of f(x)=xf(x) = |x| at x=0x=0.

参考答案

limx0x=0=f(0)\lim_{x\to 0}|x| = 0 = f(0) ⇒ continuous.
Left derivative =1=-1, right derivative =1=1 ⇒ not differentiable.


求导法则

练习 3

Differentiate f(x)=x3sinxf(x) = x^3 \sin x.

参考答案

Product rule: f(x)=3x2sinx+x3cosxf'(x) = 3x^2\sin x + x^3\cos x.

练习 4

Differentiate f(x)=x2+1x+1f(x) = \dfrac{x^2 + 1}{x + 1}.

参考答案

Quotient rule: f(x)=x2+2x1(x+1)2f'(x) = \dfrac{x^2 + 2x - 1}{(x+1)^2}.

练习 5

Differentiate f(x)=sin(ex2)f(x) = \sin(e^{x^2}).

参考答案

Chain rule (three layers): f(x)=2xex2cos(ex2)f'(x) = 2x\,e^{x^2}\cos(e^{x^2}).


复合与隐函数

练习 6

Differentiate f(x)=arcsin(x2)f(x) = \arcsin(x^2).

参考答案

Let y=arcsin(x2)y=\arcsin(x^2), so x2=sinyx^2=\sin y. Then 2x=cosy  y2x = \cos y\;y' and y=2x1x4y' = \dfrac{2x}{\sqrt{1 - x^4}}.

练习 7

For x3+y3=3xyx^3 + y^3 = 3xy, find dy/dxdy/dx.

参考答案

3x2+3y2y=3y+3xy3x^2 + 3y^2y' = 3y + 3xy'y=yx2y2xy' = \dfrac{y - x^2}{y^2 - x}.

练习 8

For x=t2, y=t3x=t^2,\ y=t^3, compute d2ydx2\dfrac{d^2 y}{dx^2}.

参考答案

dydx=3t22t=3t2\dfrac{dy}{dx} = \dfrac{3t^2}{2t} = \dfrac{3t}{2}, and d2ydx2=34t\dfrac{d^2y}{dx^2} = \dfrac{3}{4t}.


中值定理

练习 9

Show that if ff is continuous on [a,b][a,b], differentiable on (a,b)(a,b), and f(a)=f(b)f(a)=f(b), then ξ(a,b)\exists \xi\in(a,b) with f(ξ)=0f'(\xi)=0.

参考答案

Directly by Rolle’s theorem.

练习 10

Prove sinxsinyxy|\sin x - \sin y| \le |x - y|.

参考答案

MVT on f(t)=sintf(t)=\sin t gives cosξ=sinysinxyx\cos \xi = \dfrac{\sin y - \sin x}{y-x} with cosξ1|\cos \xi|\le 1.


洛必达法则

练习 11

Compute limx0sinxx\lim_{x\to 0} \dfrac{\sin x}{x}.

参考答案

00\tfrac{0}{0} type → limcosx1=1\lim \dfrac{\cos x}{1} = 1.

练习 12

Compute limxx2ex\lim_{x\to \infty} \dfrac{x^2}{e^x}.

参考答案

Two rounds: 2xex2ex0\dfrac{2x}{e^x} \to \dfrac{2}{e^x} \to 0.

练习 13

Compute limx0+xlnx\lim_{x\to 0^+} x\ln x.

参考答案

Rewrite lnx1/x\dfrac{\ln x}{1/x} (\tfrac{\infty}{\infty}). Derivatives give x0-x \to 0.


导数应用

练习 14

Find extrema of f(x)=x33x2+2f(x) = x^3 - 3x^2 + 2.

参考答案

f(x)=3x(x2)f'(x)=3x(x-2) ⇒ critical points 0,20,2.
f(0)<0f''(0)<0 ⇒ local max at (0,2)(0,2).
f(2)>0f''(2)>0 ⇒ local min at (2,2)(2,-2).

练习 15

Tangent to y=lnxy=\ln x at (1,0)(1,0).

参考答案

f(1)=1f'(1)=1y0=1(x1)y-0 = 1(x-1)y=x1y = x-1.

练习 16

Max/min of f(x)=x33x2+2f(x) = x^3 - 3x^2 + 2 on [0,3][0,3].

参考答案

Check x=0,2,3x=0,2,3: f(0)=2f(0)=2, f(2)=2f(2)=-2, f(3)=2f(3)=2. Max 22, min 2-2.


综合应用

练习 17

If y=xxy = x^x, find yy'.

参考答案

Log-differentiate: lny=xlnx\ln y = x\ln xyy=lnx+1\dfrac{y'}{y} = \ln x + 1y=xx(lnx+1)y' = x^x(\ln x + 1).

练习 18

For f(x)=x33x2+2f(x) = x^3 - 3x^2 + 2, find concavity intervals and inflection point.

参考答案

f(x)=6(x1)f''(x)=6(x-1).
Concave down on (,1)(-\infty,1), up on (1,)(1,\infty).
Inflection at (1,0)(1,0).

练习 19

Verify Cauchy MVT for f(x)=x2f(x)=x^2, g(x)=x3g(x)=x^3 on [1,2][1,2].

参考答案

2ξ3ξ2=37\dfrac{2\xi}{3\xi^2} = \dfrac{3}{7}ξ=149\xi = \dfrac{14}{9}.

练习 20

Curvature of y=x2y = x^2 at (1,1)(1,1).

参考答案

f(1)=2, f(1)=2f'(1)=2,\ f''(1)=2. Curvature κ=2[1+22]3/2=255\kappa = \dfrac{|2|}{[1+2^2]^{3/2}} = \dfrac{2}{5\sqrt{5}}.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
ξ\xi希腊字母Xi(克西)中值定理中的内部点
κ\kappa希腊字母Kappa(卡帕)曲率符号

中英对照

中文术语英文术语音标说明
练习题exercises/ˈeksəsaɪzɪz/巩固与自测的题目
曲率curvature/ˈkɜːvətʃə/曲线弯曲程度的度量

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  3. 3

    Continuity in Advanced Calculus

    先修课程

    A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.

    前往课程
  4. 4

    Differential Calculus of One Variable

    当前课程

    A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.

    前往课程

搜索