导航菜单

L'Hôpital's Rule

L’Hôpital’s rule converts certain indeterminate limits into derivative ratios, especially the 00\tfrac{0}{0} and \tfrac{\infty}{\infty} types.

Core statement

定理 1

Let f,gf,g be defined and differentiable on a punctured neighborhood of aa with g(x)0g'(x)\neq 0. If

  1. limxaf(x)=limxag(x)=0\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0 or ±\pm\infty, and
  2. limxaf(x)g(x)\lim_{x\to a} \dfrac{f'(x)}{g'(x)} exists (finite or ±\pm\infty),

then

limxaf(x)g(x)=limxaf(x)g(x).\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}.

Indeterminate forms and quick examples

  1. 00\tfrac{0}{0}: limx0sinxx=limcosx1=1\lim_{x\to 0} \dfrac{\sin x}{x} = \lim \dfrac{\cos x}{1} = 1.
  2. \tfrac{\infty}{\infty}: limxx2exlim2xexlim2ex=0\lim_{x\to \infty} \dfrac{x^2}{e^x} \to \lim \dfrac{2x}{e^x} \to \lim \dfrac{2}{e^x} = 0.
  3. 00\cdot\infty: rewrite as quotient, e.g. limx0+xlnx=limlnx1/x=0\lim_{x\to 0^+} x\ln x = \lim \dfrac{\ln x}{1/x} = 0.
  4. \infty - \infty: combine terms, then apply the rule.
  5. 000^0, 0\infty^0, 11^\infty: take logs to turn into 00\tfrac{0}{0} or \tfrac{\infty}{\infty}, e.g. xx=exlnxx^x = e^{x\ln x}.

Tips

  • Multiple rounds: check conditions before each application.
  • Pair with Taylor: series often gives the answer faster (e.g., sinxx\sin x - x).
  • Substitution: change variables to expose an indeterminate form.

Common mistakes

  • Skipping hypothesis checks (continuity/differentiability or g(x)0g'(x)\ne 0).
  • Applying it when the limit is already determinate.
  • Infinite looping: if repeated applications stall, switch methods (Taylor, squeeze, substitution).

Limitations

  • Not for limits that are already determinate.
  • Not usable if derivatives fail to exist or the derivative ratio limit fails.
  • Some problems are better handled by expansions or comparison tests.

练习题

练习 1

Compute limx0sinxx\lim_{x \to 0} \dfrac{\sin x}{x} with L’Hôpital.

参考答案

00\tfrac{0}{0} type; differentiate numerator/denominator: limx0cosx1=1\lim_{x\to 0} \dfrac{\cos x}{1} = 1.

练习 2

Compute limxx2ex\lim_{x \to \infty} \dfrac{x^2}{e^x}.

参考答案

\tfrac{\infty}{\infty} type. First application: lim2xex\lim \dfrac{2x}{e^x}, second: lim2ex=0\lim \dfrac{2}{e^x}=0.

练习 3

Compute limx0+xlnx\lim_{x \to 0^+} x \ln x.

参考答案

Rewrite as lnx1/x\dfrac{\ln x}{1/x} (\tfrac{\infty}{\infty}). Derivatives: 1/x1/x2=x0\dfrac{1/x}{-1/x^2} = -x \to 0.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
\infty数学符号Infinity(无穷大)表示量可以无限增大

中英对照

中文术语英文术语音标说明
洛必达法则L’Hôpital’s rule/loʊpiːˈtɑːlz ruːl/通过导数处理不定式极限
不定式indeterminate form/ɪnˈdɛtərmənət fɔːm/形式无法直接给出极限的表达
零除零zero over zero/ˈzɪərəʊ ˈəʊvə ˈzɪərəʊ/00\frac{0}{0}
无穷除无穷infinity over infinity/ɪnˈfɪnəti ˈəʊvə ɪnˈfɪnəti/\frac{\infty}{\infty}
乘积不定式zero times infinity/ˈzɪərəʊ taɪmz ɪnˈfɪnəti/00 \cdot \infty
幂指不定式exponential indeterminate/ɪkˌspɒnɛnʃəl ɪnˈdɛtərmənət/00, 0, 10^0,\ \infty^0,\ 1^\infty
泰勒展开Taylor expansion/ˈteɪlər ɪkˈspænʃən/用多项式逼近函数的方法

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  3. 3

    Continuity in Advanced Calculus

    先修课程

    A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.

    前往课程
  4. 4

    Differential Calculus of One Variable

    当前课程

    A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.

    前往课程

搜索