L'Hôpital's Rule
L’Hôpital’s rule converts certain indeterminate limits into derivative ratios, especially the and types.
(Infinity):数学符号,读作“无穷大”,表示值可以无限增大。
Why is it called a rule?
- Historical naming: L’Hôpital popularized it as a “rule” in his textbook.
- Emphasis on procedure: it is a calculation recipe grounded in a theorem.
- Many books also say “L’Hôpital’s theorem”; both refer to the same result.
Core statement
Let be defined and differentiable on a punctured neighborhood of with . If
- or , and
- exists (finite or ),
then
Indeterminate forms and quick examples
- : .
- : .
- : rewrite as quotient, e.g. .
- : combine terms, then apply the rule.
- , , : take logs to turn into or , e.g. .
Tips
- Multiple rounds: check conditions before each application.
- Pair with Taylor: series often gives the answer faster (e.g., ).
- Substitution: change variables to expose an indeterminate form.
Common mistakes
- Skipping hypothesis checks (continuity/differentiability or ).
- Applying it when the limit is already determinate.
- Infinite looping: if repeated applications stall, switch methods (Taylor, squeeze, substitution).
Limitations
- Not for limits that are already determinate.
- Not usable if derivatives fail to exist or the derivative ratio limit fails.
- Some problems are better handled by expansions or comparison tests.
练习题
练习 1
Compute with L’Hôpital.
type; differentiate numerator/denominator: .
练习 2
Compute .
type. First application: , second: .
练习 3
Compute .
Rewrite as (). Derivatives: .
总结
本文出现的符号
| 符号 | 类型 | 读音/说明 | 在本文中的含义 |
|---|---|---|---|
| 数学符号 | Infinity(无穷大) | 表示量可以无限增大 |
中英对照
| 中文术语 | 英文术语 | 音标 | 说明 |
|---|---|---|---|
| 洛必达法则 | L’Hôpital’s rule | /loʊpiːˈtɑːlz ruːl/ | 通过导数处理不定式极限 |
| 不定式 | indeterminate form | /ɪnˈdɛtərmənət fɔːm/ | 形式无法直接给出极限的表达 |
| 零除零 | zero over zero | /ˈzɪərəʊ ˈəʊvə ˈzɪərəʊ/ | 型 |
| 无穷除无穷 | infinity over infinity | /ɪnˈfɪnəti ˈəʊvə ɪnˈfɪnəti/ | 型 |
| 乘积不定式 | zero times infinity | /ˈzɪərəʊ taɪmz ɪnˈfɪnəti/ | 型 |
| 幂指不定式 | exponential indeterminate | /ɪkˌspɒnɛnʃəl ɪnˈdɛtərmənət/ | 型 |
| 泰勒展开 | Taylor expansion | /ˈteɪlər ɪkˈspænʃən/ | 用多项式逼近函数的方法 |
课程路线图
- 1
Exploring Functions in Advanced Mathematics
先修课程Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程 - 2
The World of Limits in Advanced Mathematics
先修课程Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程 - 3
Continuity in Advanced Calculus
先修课程A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.
前往课程 - 4
Differential Calculus of One Variable
当前课程A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.
前往课程