History of the Derivative
From falling apples to geometric tangents, the idea of the derivative took shape through two parallel stories: Newton’s fluxions and Leibniz’s differentials. The companion pages recount each path and how their notations merged into modern calculus.
总结
本文出现的符号
| 符号 | 类型 | 读音/说明 | 在本文中的含义 |
|---|---|---|---|
| (无) | - | - | 本文未新增符号 |
中英对照
| 中文术语 | 英文术语 | 音标 | 说明 |
|---|---|---|---|
| 流数法 | method of fluxions | /ˈflʌkʃənz/ | 牛顿的导数早期名称 |
| 微分法 | differential calculus | /ˌdɪfəˈrɛnʃəl ˈkælkjələs/ | 莱布尼茨的导数体系 |
| 符号系统 | notation system | /nəʊˈteɪʃən ˈsɪstəm/ | 记录和计算导数的符号方案 |
Chapters
课程路线图
- 1
Exploring Functions in Advanced Mathematics
先修课程Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程 - 2
The World of Limits in Advanced Mathematics
先修课程Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程 - 3
Continuity in Advanced Calculus
先修课程A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.
前往课程 - 4
Differential Calculus of One Variable
当前课程A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.
前往课程