反函数求导
反函数求导是微积分中的重要概念,它帮助我们计算反函数的导数。
反函数求导公式
常见反函数的导数
反三角函数
反双曲函数
常见错误和注意事项
1. 忽略定义域
错误 :( arcsin x ) ′ = 1 1 − x 2 (\arcsin x)' = \frac{1}{\sqrt{1 - x^2}} ( arcsin x ) ′ = 1 − x 2 1 对所有 x x x 成立
正确 :( arcsin x ) ′ = 1 1 − x 2 (\arcsin x)' = \frac{1}{\sqrt{1 - x^2}} ( arcsin x ) ′ = 1 − x 2 1 只在 ∣ x ∣ < 1 |x| < 1 ∣ x ∣ < 1 时成立
2. 复合函数求导错误
错误 :( arcsin ( x 2 ) ) ′ = 1 1 − x 2 ⋅ 2 x (\arcsin(x^2))' = \frac{1}{\sqrt{1 - x^2}} \cdot 2x ( arcsin ( x 2 ) ) ′ = 1 − x 2 1 ⋅ 2 x
正确 :( arcsin ( x 2 ) ) ′ = 1 1 − x 4 ⋅ 2 x (\arcsin(x^2))' = \frac{1}{\sqrt{1 - x^4}} \cdot 2x ( arcsin ( x 2 ) ) ′ = 1 − x 4 1 ⋅ 2 x
3. 符号错误
错误 :( arccos x ) ′ = 1 1 − x 2 (\arccos x)' = \frac{1}{\sqrt{1 - x^2}} ( arccos x ) ′ = 1 − x 2 1
正确 :( arccos x ) ′ = − 1 1 − x 2 (\arccos x)' = -\frac{1}{\sqrt{1 - x^2}} ( arccos x ) ′ = − 1 − x 2 1
练习题
练习 1
求函数 f ( x ) = arcsin ( x 2 ) f(x) = \arcsin(x^2) f ( x ) = arcsin ( x 2 ) 的导数。
参考答案
解题思路 :
使用反函数求导公式和链式法则。
详细步骤 :
设 y = arcsin ( x 2 ) y = \arcsin(x^2) y = arcsin ( x 2 ) ,则 x 2 = sin y x^2 = \sin y x 2 = sin y
两边对 x x x 求导:2 x = cos y ⋅ y ′ 2x = \cos y \cdot y' 2 x = cos y ⋅ y ′
解出 y ′ y' y ′ :y ′ = 2 x cos y = 2 x 1 − x 4 y' = \frac{2x}{\cos y} = \frac{2x}{\sqrt{1 - x^4}} y ′ = c o s y 2 x = 1 − x 4 2 x
答案 :f ′ ( x ) = 2 x 1 − x 4 f'(x) = \frac{2x}{\sqrt{1 - x^4}} f ′ ( x ) = 1 − x 4 2 x
练习 2
求函数 f ( x ) = arctan ( ln x ) f(x) = \arctan(\ln x) f ( x ) = arctan ( ln x ) 的导数。
参考答案
解题思路 :
这是一个复合函数,包含反三角函数和对数函数。
详细步骤 :
外层:f ( u ) = arctan u f(u) = \arctan u f ( u ) = arctan u ,f ′ ( u ) = 1 1 + u 2 f'(u) = \frac{1}{1 + u^2} f ′ ( u ) = 1 + u 2 1
内层:g ( x ) = ln x g(x) = \ln x g ( x ) = ln x ,g ′ ( x ) = 1 x g'(x) = \frac{1}{x} g ′ ( x ) = x 1
复合函数导数:f ′ ( x ) = 1 1 + ( ln x ) 2 ⋅ 1 x = 1 x ( 1 + ( ln x ) 2 ) f'(x) = \frac{1}{1 + (\ln x)^2} \cdot \frac{1}{x} = \frac{1}{x(1 + (\ln x)^2)} f ′ ( x ) = 1 + ( l n x ) 2 1 ⋅ x 1 = x ( 1 + ( l n x ) 2 ) 1
答案 :f ′ ( x ) = 1 x ( 1 + ( ln x ) 2 ) f'(x) = \frac{1}{x(1 + (\ln x)^2)} f ′ ( x ) = x ( 1 + ( l n x ) 2 ) 1
练习 3
求函数 f ( x ) = arccos ( 1 − x 2 ) f(x) = \arccos(\sqrt{1 - x^2}) f ( x ) = arccos ( 1 − x 2 ) 的导数。
参考答案
解题思路 :
这是一个复合函数,包含反三角函数和幂函数。
详细步骤 :
外层:f ( u ) = arccos u f(u) = \arccos u f ( u ) = arccos u ,f ′ ( u ) = − 1 1 − u 2 f'(u) = -\frac{1}{\sqrt{1 - u^2}} f ′ ( u ) = − 1 − u 2 1
内层:g ( x ) = 1 − x 2 g(x) = \sqrt{1 - x^2} g ( x ) = 1 − x 2 ,g ′ ( x ) = − x 1 − x 2 g'(x) = \frac{-x}{\sqrt{1 - x^2}} g ′ ( x ) = 1 − x 2 − x
复合函数导数:f ′ ( x ) = − 1 1 − ( 1 − x 2 ) ⋅ − x 1 − x 2 = x ∣ x ∣ 1 − x 2 f'(x) = -\frac{1}{\sqrt{1 - (1 - x^2)}} \cdot \frac{-x}{\sqrt{1 - x^2}} = \frac{x}{|x|\sqrt{1 - x^2}} f ′ ( x ) = − 1 − ( 1 − x 2 ) 1 ⋅ 1 − x 2 − x = ∣ x ∣ 1 − x 2 x
答案 :f ′ ( x ) = x ∣ x ∣ 1 − x 2 f'(x) = \frac{x}{|x|\sqrt{1 - x^2}} f ′ ( x ) = ∣ x ∣ 1 − x 2 x
练习 4
求函数 f ( x ) = sinh − 1 ( e x ) f(x) = \sinh^{-1}(e^x) f ( x ) = sinh − 1 ( e x ) 的导数。
参考答案
解题思路 :
这是一个复合函数,包含反双曲函数和指数函数。
详细步骤 :
外层:f ( u ) = sinh − 1 u f(u) = \sinh^{-1} u f ( u ) = sinh − 1 u ,f ′ ( u ) = 1 1 + u 2 f'(u) = \frac{1}{\sqrt{1 + u^2}} f ′ ( u ) = 1 + u 2 1
内层:g ( x ) = e x g(x) = e^x g ( x ) = e x ,g ′ ( x ) = e x g'(x) = e^x g ′ ( x ) = e x
复合函数导数:f ′ ( x ) = 1 1 + e 2 x ⋅ e x = e x 1 + e 2 x f'(x) = \frac{1}{\sqrt{1 + e^{2x}}} \cdot e^x = \frac{e^x}{\sqrt{1 + e^{2x}}} f ′ ( x ) = 1 + e 2 x 1 ⋅ e x = 1 + e 2 x e x
答案 :f ′ ( x ) = e x 1 + e 2 x f'(x) = \frac{e^x}{\sqrt{1 + e^{2x}}} f ′ ( x ) = 1 + e 2 x e x
练习 5
求函数 f ( x ) = ln ( arccos x ) f(x) = \ln(\arccos x) f ( x ) = ln ( arccos x ) 的导数。
参考答案
解题思路 :
这是一个复合函数,包含对数函数和反三角函数。
详细步骤 :
外层:f ( u ) = ln u f(u) = \ln u f ( u ) = ln u ,f ′ ( u ) = 1 u f'(u) = \frac{1}{u} f ′ ( u ) = u 1
内层:g ( x ) = arccos x g(x) = \arccos x g ( x ) = arccos x ,g ′ ( x ) = − 1 1 − x 2 g'(x) = -\frac{1}{\sqrt{1 - x^2}} g ′ ( x ) = − 1 − x 2 1
复合函数导数:f ′ ( x ) = 1 arccos x ⋅ ( − 1 1 − x 2 ) = − 1 arccos x ⋅ 1 − x 2 f'(x) = \frac{1}{\arccos x} \cdot (-\frac{1}{\sqrt{1 - x^2}}) = -\frac{1}{\arccos x \cdot \sqrt{1 - x^2}} f ′ ( x ) = a r c c o s x 1 ⋅ ( − 1 − x 2 1 ) = − a r c c o s x ⋅ 1 − x 2 1
答案 :f ′ ( x ) = − 1 arccos x ⋅ 1 − x 2 f'(x) = -\frac{1}{\arccos x \cdot \sqrt{1 - x^2}} f ′ ( x ) = − a r c c o s x ⋅ 1 − x 2 1
练习 6
改编自2022考研数学一第1题
设 lim x → 1 f ( x ) ln x = 1 \lim\limits_{x\to1} \frac{f(x)}{\ln x}=1 x → 1 lim l n x f ( x ) = 1 ,求 f ′ ( 1 ) f'(1) f ′ ( 1 ) 的值。
参考答案
解题思路 :
利用等价无穷小的性质和反函数求导的思想。
详细步骤 :
由 lim x → 1 f ( x ) ln x = 1 \lim\limits_{x\to1} \frac{f(x)}{\ln x}=1 x → 1 lim l n x f ( x ) = 1 ,可得 f ( x ) ∼ ln x f(x)\sim \ln x f ( x ) ∼ ln x 当 x → 1 x\to1 x → 1
当 x → 1 x\to1 x → 1 时,ln x → 0 \ln x\to0 ln x → 0 ,所以 lim x → 1 f ( x ) = 0 \lim\limits_{x\to1} f(x)=0 x → 1 lim f ( x ) = 0
设 g ( x ) = f ( x ) ln x g(x)=\frac{f(x)}{\ln x} g ( x ) = l n x f ( x ) ,则 f ( x ) = g ( x ) ln x f(x)=g(x)\ln x f ( x ) = g ( x ) ln x
应用乘积法则:
f ′ ( x ) = g ′ ( x ) ln x + g ( x ) ⋅ 1 x f'(x)=g'(x)\ln x + g(x)\cdot\frac{1}{x} f ′ ( x ) = g ′ ( x ) ln x + g ( x ) ⋅ x 1
当 x → 1 x\to1 x → 1 时,ln x → 0 \ln x\to0 ln x → 0 ,1 x → 1 \frac{1}{x}\to1 x 1 → 1 ,g ( x ) → 1 g(x)\to1 g ( x ) → 1
因此 f ′ ( 1 ) = lim x → 1 f ′ ( x ) = 1 f'(1)=\lim\limits_{x\to1} f'(x)=1 f ′ ( 1 ) = x → 1 lim f ′ ( x ) = 1
答案 :f ′ ( 1 ) = 1 f'(1)=1 f ′ ( 1 ) = 1
练习 7
改编自2023考研数学一第3题
设函数 y = f ( x ) y=f(x) y = f ( x ) 由参数方程 { x = 2 t + ∣ t ∣ y = ∣ t ∣ sin t \begin{cases}x=2t+|t|\\y=|t|\sin t\end{cases} { x = 2 t + ∣ t ∣ y = ∣ t ∣ sin t 确定,求 f ′ ( 0 ) f'(0) f ′ ( 0 ) 。
参考答案
解题思路 :
使用参数方程求导公式,涉及反函数求导的思想。
详细步骤 :
当 t ≥ 0 t\geq0 t ≥ 0 时,x = 3 t , y = t sin t x=3t, y=t\sin t x = 3 t , y = t sin t ,所以 y = x 3 sin x 3 y=\frac{x}{3}\sin\frac{x}{3} y = 3 x sin 3 x
当 t < 0 t<0 t < 0 时,x = t , y = − t sin t x=t, y=-t\sin t x = t , y = − t sin t ,所以 y = − x sin x y=-x\sin x y = − x sin x
因此 f ( x ) = { x 3 sin x 3 , x ≥ 0 − x sin x , x < 0 f(x)=\begin{cases}\frac{x}{3}\sin\frac{x}{3}, & x\geq0\\-x\sin x, & x<0\end{cases} f ( x ) = { 3 x sin 3 x , − x sin x , x ≥ 0 x < 0
计算左导数:
f − ′ ( 0 ) = lim x → 0 − − x sin x − 0 x = − lim x → 0 − sin x = 0 f'_-(0)=\lim\limits_{x\to0^-}\frac{-x\sin x-0}{x}=-\lim\limits_{x\to0^-}\sin x=0 f − ′ ( 0 ) = x → 0 − lim x − x s i n x − 0 = − x → 0 − lim sin x = 0
计算右导数:
f + ′ ( 0 ) = lim x → 0 + x 3 sin x 3 − 0 x = lim x → 0 + sin x 3 3 = 0 f'_+(0)=\lim\limits_{x\to0^+}\frac{\frac{x}{3}\sin\frac{x}{3}-0}{x}=\lim\limits_{x\to0^+}\frac{\sin\frac{x}{3}}{3}=0 f + ′ ( 0 ) = x → 0 + lim x 3 x s i n 3 x − 0 = x → 0 + lim 3 s i n 3 x = 0
由于左导数和右导数相等,所以 f ′ ( 0 ) = 0 f'(0)=0 f ′ ( 0 ) = 0
答案 :f ′ ( 0 ) = 0 f'(0)=0 f ′ ( 0 ) = 0
练习 8
改编自2024考研数学一第1题
已知函数 f ( x ) = ∫ 0 x e cos t d t f(x)=\int_0^x e^{\cos t}dt f ( x ) = ∫ 0 x e c o s t d t ,求 f ′ ( x ) f'(x) f ′ ( x ) 和 f ′ ′ ( x ) f''(x) f ′′ ( x ) 。
参考答案
解题思路 :
使用积分上限函数求导公式和复合函数求导。
详细步骤 :
根据积分上限函数求导公式:
f ′ ( x ) = e cos x f'(x)=e^{\cos x} f ′ ( x ) = e c o s x
对 f ′ ( x ) f'(x) f ′ ( x ) 再次求导,使用复合函数求导:
设 u = cos x u=\cos x u = cos x ,则 f ′ ( x ) = e u f'(x)=e^u f ′ ( x ) = e u
d d x ( e u ) = e u ⋅ d u d x = e cos x ⋅ ( − sin x ) = − e cos x sin x \frac{d}{dx}(e^u)=e^u\cdot\frac{du}{dx}=e^{\cos x}\cdot(-\sin x)=-e^{\cos x}\sin x d x d ( e u ) = e u ⋅ d x d u = e c o s x ⋅ ( − sin x ) = − e c o s x sin x
答案 :
f ′ ( x ) = e cos x f'(x)=e^{\cos x} f ′ ( x ) = e c o s x
f ′ ′ ( x ) = − e cos x sin x f''(x)=-e^{\cos x}\sin x f ′′ ( x ) = − e c o s x sin x
练习 9
改编自2025考研数学一第1题
已知函数 f ( x ) = ∫ 0 x e t 2 sin t d t f(x) = \int_0^x e^{t^2} \sin t\,dt f ( x ) = ∫ 0 x e t 2 sin t d t ,求 f ′ ( x ) f'(x) f ′ ( x ) 和 f ′ ′ ( x ) f''(x) f ′′ ( x ) 。
参考答案
解题思路 :
使用积分上限函数求导公式和复合函数求导。
详细步骤 :
根据积分上限函数求导公式:
f ′ ( x ) = e x 2 sin x f'(x) = e^{x^2} \sin x f ′ ( x ) = e x 2 sin x
对 f ′ ( x ) f'(x) f ′ ( x ) 再次求导,使用乘积法则和复合函数求导:
设 u = e x 2 u = e^{x^2} u = e x 2 ,v = sin x v = \sin x v = sin x
u ′ = e x 2 ⋅ 2 x = 2 x e x 2 u' = e^{x^2} \cdot 2x = 2x e^{x^2} u ′ = e x 2 ⋅ 2 x = 2 x e x 2 (复合函数求导)
v ′ = cos x v' = \cos x v ′ = cos x
应用乘积法则:
f ′ ′ ( x ) = u ′ v + u v ′ = 2 x e x 2 ⋅ sin x + e x 2 ⋅ cos x f''(x) = u'v + uv' = 2x e^{x^2} \cdot \sin x + e^{x^2} \cdot \cos x f ′′ ( x ) = u ′ v + u v ′ = 2 x e x 2 ⋅ sin x + e x 2 ⋅ cos x
= 2 x e x 2 sin x + e x 2 cos x = 2x e^{x^2} \sin x + e^{x^2} \cos x = 2 x e x 2 sin x + e x 2 cos x
答案 :
f ′ ( x ) = e x 2 sin x f'(x) = e^{x^2} \sin x f ′ ( x ) = e x 2 sin x
f ′ ′ ( x ) = 2 x e x 2 sin x + e x 2 cos x f''(x) = 2x e^{x^2} \sin x + e^{x^2} \cos x f ′′ ( x ) = 2 x e x 2 sin x + e x 2 cos x
练习 10
改编自2022考研数学一第17题
设 y = y ( x ) y=y(x) y = y ( x ) 满足 y ′ + 1 2 x y = 2 + x y'+\frac{1}{2\sqrt{x}}y=2+\sqrt{x} y ′ + 2 x 1 y = 2 + x ,y ( 1 ) = 3 y(1)=3 y ( 1 ) = 3 ,求 y ( x ) y(x) y ( x ) 的表达式。
参考答案
解题思路 :
使用一阶线性微分方程的求解方法。
详细步骤 :
这是一个一阶线性微分方程:y ′ + 1 2 x y = 2 + x y'+\frac{1}{2\sqrt{x}}y=2+\sqrt{x} y ′ + 2 x 1 y = 2 + x
积分因子:μ ( x ) = e ∫ 1 2 x d x = e x \mu(x)=e^{\int\frac{1}{2\sqrt{x}}dx}=e^{\sqrt{x}} μ ( x ) = e ∫ 2 x 1 d x = e x
方程两边乘以积分因子:
e x y ′ + e x 1 2 x y = ( 2 + x ) e x e^{\sqrt{x}}y'+e^{\sqrt{x}}\frac{1}{2\sqrt{x}}y=(2+\sqrt{x})e^{\sqrt{x}} e x y ′ + e x 2 x 1 y = ( 2 + x ) e x
左边可以写成:( e x y ) ′ = ( 2 + x ) e x (e^{\sqrt{x}}y)'=(2+\sqrt{x})e^{\sqrt{x}} ( e x y ) ′ = ( 2 + x ) e x
积分得:e x y = ∫ ( 2 + x ) e x d x e^{\sqrt{x}}y=\int(2+\sqrt{x})e^{\sqrt{x}}dx e x y = ∫ ( 2 + x ) e x d x
计算积分:∫ ( 2 + x ) e x d x = 2 ∫ e x d x + ∫ x e x d x \int(2+\sqrt{x})e^{\sqrt{x}}dx=2\int e^{\sqrt{x}}dx+\int\sqrt{x}e^{\sqrt{x}}dx ∫ ( 2 + x ) e x d x = 2 ∫ e x d x + ∫ x e x d x
设 u = x u=\sqrt{x} u = x ,则 d x = 2 u d u dx=2udu d x = 2 u d u ,积分变为:
2 ∫ e u ⋅ 2 u d u + ∫ u e u ⋅ 2 u d u = 4 ∫ u e u d u + 2 ∫ u 2 e u d u 2\int e^u\cdot2udu+\int ue^u\cdot2udu=4\int ue^udu+2\int u^2e^udu 2 ∫ e u ⋅ 2 u d u + ∫ u e u ⋅ 2 u d u = 4 ∫ u e u d u + 2 ∫ u 2 e u d u
使用分部积分法求解,最终得到:
y ( x ) = e − x ( 2 x e x + C ) y(x)=e^{-\sqrt{x}}\left(2x e^{\sqrt{x}}+C\right) y ( x ) = e − x ( 2 x e x + C )
由 y ( 1 ) = 3 y(1)=3 y ( 1 ) = 3 ,得 C = e C=e C = e ,所以:
y ( x ) = e − x ( 2 x e x + e ) y(x)=e^{-\sqrt{x}}\left(2x e^{\sqrt{x}}+e\right) y ( x ) = e − x ( 2 x e x + e )
答案 :y ( x ) = e − x ( 2 x e x + e ) y(x)=e^{-\sqrt{x}}\left(2x e^{\sqrt{x}}+e\right) y ( x ) = e − x ( 2 x e x + e )
总结
中英对照
中文术语 英文术语 音标 说明 反函数 inverse function /ɪnˈvɜːs ˈfʌŋkʃən/ 与原函数互为反函数的函数 反函数求导 derivative of inverse function /dɪˈrɪvətɪv əv ɪnˈvɜːs ˈfʌŋkʃən/ 求反函数导数的方法 反三角函数 inverse trigonometric function /ɪnˈvɜːs trɪɡənəˈmetrɪk ˈfʌŋkʃən/ 三角函数的反函数 反双曲函数 inverse hyperbolic function /ɪnˈvɜːs haɪpəˈbɒlɪk ˈfʌŋkʃən/ 双曲函数的反函数
1 Exploring Functions in Advanced Mathematics
先修课程
Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程
2 The World of Limits in Advanced Mathematics
先修课程
Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程
3 Continuity in Advanced Calculus
先修课程
A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.
前往课程
4 Differential Calculus of One Variable
当前课程
A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.
前往课程