Newton and the Birth of Fluxions
From falling apples to a question
Cambridge, 1665. A young Isaac Newton notices that a falling apple speeds up. He asks: what is the speed at a single instant?
He models the position as and compares average speeds over shrinking intervals:
Letting gives , the instantaneous speed.
Fluxions
Newton calls instantaneous rates fluxions and introduces dot notation:
- : fluxion of position (instantaneous velocity)
- : fluxion of time (equals )
For the apple, and differentiating again yields constant acceleration .
Geometric view
Plotting as a parabola:
- Average speed = secant slope.
- Instantaneous speed = tangent slope.
- Shrinking the interval turns the secant into the tangent.
General definition
For any ,
Fluxions thus capture motion, change, and tangents in one limit.
总结
本文出现的符号
| 符号 | 类型 | 读音/说明 | 在本文中的含义 |
|---|---|---|---|
| 符号 | s dot | 位置对时间的瞬时变化率(速度) | |
| 数学符号 | Delta t | 有限时间增量 |
中英对照
| 中文术语 | 英文术语 | 音标 | 说明 |
|---|---|---|---|
| 流数 | fluxion | /ˈflʌkʃən/ | 牛顿用于瞬时变化率的术语 |
| 切线斜率 | tangent slope | /ˈtændʒənt sləʊp/ | 曲线在一点的瞬时变化率 |
| 割线斜率 | secant slope | /ˈsiːkənt sləʊp/ | 连接两点的平均变化率 |
课程路线图
- 1
Exploring Functions in Advanced Mathematics
先修课程Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程 - 2
The World of Limits in Advanced Mathematics
先修课程Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程 - 3
Continuity in Advanced Calculus
先修课程A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.
前往课程 - 4
Differential Calculus of One Variable
当前课程A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.
前往课程