导航菜单

Newton and the Birth of Fluxions

From falling apples to a question

Cambridge, 1665. A young Isaac Newton notices that a falling apple speeds up. He asks: what is the speed at a single instant?

He models the position as s(t)=4.9t2s(t) = 4.9t^2 and compares average speeds over shrinking intervals:

s(t+Δt)s(t)Δt=9.8t+4.9Δt.\frac{s(t+\Delta t)-s(t)}{\Delta t} = 9.8t + 4.9\Delta t.

Letting Δt0\Delta t \to 0 gives 9.8t9.8t, the instantaneous speed.

Fluxions

Newton calls instantaneous rates fluxions and introduces dot notation:

  • s˙\dot{s}: fluxion of position (instantaneous velocity)
  • t˙\dot{t}: fluxion of time (equals 11)

For the apple, s˙=9.8t\dot{s} = 9.8t and differentiating again yields constant acceleration 9.8 m/s29.8\ \text{m/s}^2.

Geometric view

Plotting s(t)s(t) as a parabola:

  • Average speed = secant slope.
  • Instantaneous speed = tangent slope.
  • Shrinking the interval turns the secant into the tangent.

General definition

For any y=f(x)y = f(x),

dydx=limΔx0f(x+Δx)f(x)Δx.\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}.

Fluxions thus capture motion, change, and tangents in one limit.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
s˙\dot{s}符号s dot位置对时间的瞬时变化率(速度)
Δt\Delta t数学符号Delta t有限时间增量

中英对照

中文术语英文术语音标说明
流数fluxion/ˈflʌkʃən/牛顿用于瞬时变化率的术语
切线斜率tangent slope/ˈtændʒənt sləʊp/曲线在一点的瞬时变化率
割线斜率secant slope/ˈsiːkənt sləʊp/连接两点的平均变化率

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  3. 3

    Continuity in Advanced Calculus

    先修课程

    A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.

    前往课程
  4. 4

    Differential Calculus of One Variable

    当前课程

    A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.

    前往课程

搜索