复合函数求导
复合函数求导是微积分中的重要技巧,掌握好链式法则对于解决复杂的求导问题至关重要。
复合函数的基本概念
什么是复合函数
定义 :如果函数 y = f ( u ) y = f(u) y = f ( u ) 的定义域包含函数 u = g ( x ) u = g(x) u = g ( x ) 的值域,那么函数 y = f ( g ( x ) ) y = f(g(x)) y = f ( g ( x )) 称为 f f f 和 g g g 的复合函数。
记法 :y = ( f ∘ g ) ( x ) = f ( g ( x ) ) y = (f \circ g)(x) = f(g(x)) y = ( f ∘ g ) ( x ) = f ( g ( x ))
复合函数的例子
例子 1 :y = sin ( x 2 ) y = \sin(x^2) y = sin ( x 2 )
外层函数:f ( u ) = sin u f(u) = \sin u f ( u ) = sin u
内层函数:g ( x ) = x 2 g(x) = x^2 g ( x ) = x 2
复合函数:y = f ( g ( x ) ) = sin ( x 2 ) y = f(g(x)) = \sin(x^2) y = f ( g ( x )) = sin ( x 2 )
例子 2 :y = e ln x y = e^{\ln x} y = e l n x
外层函数:f ( u ) = e u f(u) = e^u f ( u ) = e u
内层函数:g ( x ) = ln x g(x) = \ln x g ( x ) = ln x
复合函数:y = f ( g ( x ) ) = e ln x = x y = f(g(x)) = e^{\ln x} = x y = f ( g ( x )) = e l n x = x
链式法则
基本链式法则
多层复合函数
三层复合函数
常见复合函数求导
1. 幂函数复合
2. 指数函数复合
3. 对数函数复合
4. 三角函数复合
5. 反三角函数复合
练习题
练习 1
求函数 f ( x ) = sin ( e x 2 ) f(x) = \sin(e^{x^2}) f ( x ) = sin ( e x 2 ) 的导数。
参考答案
解题思路 :
这是一个三层复合函数,需要逐层使用链式法则。
详细步骤 :
最外层:f ( u ) = sin u f(u) = \sin u f ( u ) = sin u ,f ′ ( u ) = cos u f'(u) = \cos u f ′ ( u ) = cos u
中间层:g ( v ) = e v g(v) = e^v g ( v ) = e v ,g ′ ( v ) = e v g'(v) = e^v g ′ ( v ) = e v
最内层:h ( x ) = x 2 h(x) = x^2 h ( x ) = x 2 ,h ′ ( x ) = 2 x h'(x) = 2x h ′ ( x ) = 2 x
复合函数导数:f ′ ( x ) = cos ( e x 2 ) ⋅ e x 2 ⋅ 2 x = 2 x e x 2 cos ( e x 2 ) f'(x) = \cos(e^{x^2}) \cdot e^{x^2} \cdot 2x = 2xe^{x^2}\cos(e^{x^2}) f ′ ( x ) = cos ( e x 2 ) ⋅ e x 2 ⋅ 2 x = 2 x e x 2 cos ( e x 2 )
答案 :f ′ ( x ) = 2 x e x 2 cos ( e x 2 ) f'(x) = 2xe^{x^2}\cos(e^{x^2}) f ′ ( x ) = 2 x e x 2 cos ( e x 2 )
练习 2
求函数 f ( x ) = ln ( sin ( x 3 + 1 ) ) f(x) = \ln(\sin(x^3 + 1)) f ( x ) = ln ( sin ( x 3 + 1 )) 的导数。
参考答案
解题思路 :
这是一个三层复合函数,使用对数函数和三角函数的复合。
详细步骤 :
最外层:f ( u ) = ln u f(u) = \ln u f ( u ) = ln u ,f ′ ( u ) = 1 u f'(u) = \frac{1}{u} f ′ ( u ) = u 1
中间层:g ( v ) = sin v g(v) = \sin v g ( v ) = sin v ,g ′ ( v ) = cos v g'(v) = \cos v g ′ ( v ) = cos v
最内层:h ( x ) = x 3 + 1 h(x) = x^3 + 1 h ( x ) = x 3 + 1 ,h ′ ( x ) = 3 x 2 h'(x) = 3x^2 h ′ ( x ) = 3 x 2
复合函数导数:f ′ ( x ) = 1 sin ( x 3 + 1 ) ⋅ cos ( x 3 + 1 ) ⋅ 3 x 2 = 3 x 2 cos ( x 3 + 1 ) sin ( x 3 + 1 ) = 3 x 2 cot ( x 3 + 1 ) f'(x) = \frac{1}{\sin(x^3 + 1)} \cdot \cos(x^3 + 1) \cdot 3x^2 = \frac{3x^2\cos(x^3 + 1)}{\sin(x^3 + 1)} = 3x^2\cot(x^3 + 1) f ′ ( x ) = s i n ( x 3 + 1 ) 1 ⋅ cos ( x 3 + 1 ) ⋅ 3 x 2 = s i n ( x 3 + 1 ) 3 x 2 c o s ( x 3 + 1 ) = 3 x 2 cot ( x 3 + 1 )
答案 :f ′ ( x ) = 3 x 2 cot ( x 3 + 1 ) f'(x) = 3x^2\cot(x^3 + 1) f ′ ( x ) = 3 x 2 cot ( x 3 + 1 )
练习 3
求函数 f ( x ) = ( x 2 + 1 ) sin x f(x) = (x^2 + 1)^{\sin x} f ( x ) = ( x 2 + 1 ) s i n x 的导数。
参考答案
解题思路 :
这是一个幂函数复合,需要使用幂函数求导公式。
详细步骤 :
外层:f ( u ) = u sin x f(u) = u^{\sin x} f ( u ) = u s i n x ,f ′ ( u ) = sin x ⋅ u sin x − 1 f'(u) = \sin x \cdot u^{\sin x - 1} f ′ ( u ) = sin x ⋅ u s i n x − 1
内层:g ( x ) = x 2 + 1 g(x) = x^2 + 1 g ( x ) = x 2 + 1 ,g ′ ( x ) = 2 x g'(x) = 2x g ′ ( x ) = 2 x
复合函数导数:f ′ ( x ) = sin x ⋅ ( x 2 + 1 ) sin x − 1 ⋅ 2 x = 2 x sin x ( x 2 + 1 ) sin x − 1 f'(x) = \sin x \cdot (x^2 + 1)^{\sin x - 1} \cdot 2x = 2x\sin x(x^2 + 1)^{\sin x - 1} f ′ ( x ) = sin x ⋅ ( x 2 + 1 ) s i n x − 1 ⋅ 2 x = 2 x sin x ( x 2 + 1 ) s i n x − 1
答案 :f ′ ( x ) = 2 x sin x ( x 2 + 1 ) sin x − 1 f'(x) = 2x\sin x(x^2 + 1)^{\sin x - 1} f ′ ( x ) = 2 x sin x ( x 2 + 1 ) s i n x − 1
练习 4
求函数 f ( x ) = arcsin ( ln ( x 2 + 1 ) ) f(x) = \arcsin(\ln(x^2 + 1)) f ( x ) = arcsin ( ln ( x 2 + 1 )) 的导数。
参考答案
解题思路 :
这是一个三层复合函数,包含反三角函数和对数函数。
详细步骤 :
最外层:f ( u ) = arcsin u f(u) = \arcsin u f ( u ) = arcsin u ,f ′ ( u ) = 1 1 − u 2 f'(u) = \frac{1}{\sqrt{1 - u^2}} f ′ ( u ) = 1 − u 2 1
中间层:g ( v ) = ln v g(v) = \ln v g ( v ) = ln v ,g ′ ( v ) = 1 v g'(v) = \frac{1}{v} g ′ ( v ) = v 1
最内层:h ( x ) = x 2 + 1 h(x) = x^2 + 1 h ( x ) = x 2 + 1 ,h ′ ( x ) = 2 x h'(x) = 2x h ′ ( x ) = 2 x
复合函数导数:f ′ ( x ) = 1 1 − ( ln ( x 2 + 1 ) ) 2 ⋅ 1 x 2 + 1 ⋅ 2 x = 2 x ( x 2 + 1 ) 1 − ( ln ( x 2 + 1 ) ) 2 f'(x) = \frac{1}{\sqrt{1 - (\ln(x^2 + 1))^2}} \cdot \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{(x^2 + 1)\sqrt{1 - (\ln(x^2 + 1))^2}} f ′ ( x ) = 1 − ( l n ( x 2 + 1 ) ) 2 1 ⋅ x 2 + 1 1 ⋅ 2 x = ( x 2 + 1 ) 1 − ( l n ( x 2 + 1 ) ) 2 2 x
答案 :f ′ ( x ) = 2 x ( x 2 + 1 ) 1 − ( ln ( x 2 + 1 ) ) 2 f'(x) = \frac{2x}{(x^2 + 1)\sqrt{1 - (\ln(x^2 + 1))^2}} f ′ ( x ) = ( x 2 + 1 ) 1 − ( l n ( x 2 + 1 ) ) 2 2 x
练习 5
求函数 f ( x ) = e sin ( ln ( x 2 + 1 ) ) f(x) = e^{\sin(\ln(x^2 + 1))} f ( x ) = e s i n ( l n ( x 2 + 1 )) 的导数。
参考答案
解题思路 :
这是一个四层复合函数,需要逐层使用链式法则。
详细步骤 :
最外层:f ( u ) = e u f(u) = e^u f ( u ) = e u ,f ′ ( u ) = e u f'(u) = e^u f ′ ( u ) = e u
第二层:g ( v ) = sin v g(v) = \sin v g ( v ) = sin v ,g ′ ( v ) = cos v g'(v) = \cos v g ′ ( v ) = cos v
第三层:h ( w ) = ln w h(w) = \ln w h ( w ) = ln w ,h ′ ( w ) = 1 w h'(w) = \frac{1}{w} h ′ ( w ) = w 1
最内层:k ( x ) = x 2 + 1 k(x) = x^2 + 1 k ( x ) = x 2 + 1 ,k ′ ( x ) = 2 x k'(x) = 2x k ′ ( x ) = 2 x
复合函数导数:f ′ ( x ) = e sin ( ln ( x 2 + 1 ) ) ⋅ cos ( ln ( x 2 + 1 ) ) ⋅ 1 x 2 + 1 ⋅ 2 x = 2 x cos ( ln ( x 2 + 1 ) ) e sin ( ln ( x 2 + 1 ) ) x 2 + 1 f'(x) = e^{\sin(\ln(x^2 + 1))} \cdot \cos(\ln(x^2 + 1)) \cdot \frac{1}{x^2 + 1} \cdot 2x = \frac{2x\cos(\ln(x^2 + 1))e^{\sin(\ln(x^2 + 1))}}{x^2 + 1} f ′ ( x ) = e s i n ( l n ( x 2 + 1 )) ⋅ cos ( ln ( x 2 + 1 )) ⋅ x 2 + 1 1 ⋅ 2 x = x 2 + 1 2 x c o s ( l n ( x 2 + 1 )) e s i n ( l n ( x 2 + 1 ))
答案 :f ′ ( x ) = 2 x cos ( ln ( x 2 + 1 ) ) e sin ( ln ( x 2 + 1 ) ) x 2 + 1 f'(x) = \frac{2x\cos(\ln(x^2 + 1))e^{\sin(\ln(x^2 + 1))}}{x^2 + 1} f ′ ( x ) = x 2 + 1 2 x c o s ( l n ( x 2 + 1 )) e s i n ( l n ( x 2 + 1 ))
练习 6
改编自2022考研数学一第2题
设 f ( u ) f(u) f ( u ) 可导,z = x y f ( y x ) z=xyf\left(\frac{y}{x}\right) z = x y f ( x y ) ,求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂ x ∂ z 。
参考答案
解题思路 :
使用复合函数的链式法则和乘积法则。
详细步骤 :
设 u = y x u=\frac{y}{x} u = x y ,则 z = x y f ( u ) z=xyf(u) z = x y f ( u )
对 x x x 求偏导,使用乘积法则:
∂ z ∂ x = y f ( u ) + x y f ′ ( u ) ⋅ ∂ u ∂ x \frac{\partial z}{\partial x}=yf(u)+xyf'(u)\cdot\frac{\partial u}{\partial x} ∂ x ∂ z = y f ( u ) + x y f ′ ( u ) ⋅ ∂ x ∂ u
计算 ∂ u ∂ x \frac{\partial u}{\partial x} ∂ x ∂ u :
u = y x u=\frac{y}{x} u = x y ,所以 ∂ u ∂ x = − y x 2 \frac{\partial u}{\partial x}=-\frac{y}{x^2} ∂ x ∂ u = − x 2 y
代入得到:
∂ z ∂ x = y f ( y x ) + x y f ′ ( y x ) ⋅ ( − y x 2 ) \frac{\partial z}{\partial x}=yf\left(\frac{y}{x}\right)+xyf'\left(\frac{y}{x}\right)\cdot\left(-\frac{y}{x^2}\right) ∂ x ∂ z = y f ( x y ) + x y f ′ ( x y ) ⋅ ( − x 2 y )
= y f ( y x ) − y 2 f ′ ( y x ) 1 x =yf\left(\frac{y}{x}\right)-y^2f'\left(\frac{y}{x}\right)\frac{1}{x} = y f ( x y ) − y 2 f ′ ( x y ) x 1
答案 :∂ z ∂ x = y f ( y x ) − y 2 f ′ ( y x ) 1 x \frac{\partial z}{\partial x}=yf\left(\frac{y}{x}\right)-y^2f'\left(\frac{y}{x}\right)\frac{1}{x} ∂ x ∂ z = y f ( x y ) − y 2 f ′ ( x y ) x 1
练习 7
改编自2023考研数学一第3题
设函数 y = f ( x ) y=f(x) y = f ( x ) 由参数方程 { x = 2 t + ∣ t ∣ y = ∣ t ∣ sin t \begin{cases}x=2t+|t|\\y=|t|\sin t\end{cases} { x = 2 t + ∣ t ∣ y = ∣ t ∣ sin t 确定,求 f ′ ( 0 ) f'(0) f ′ ( 0 ) 。
参考答案
解题思路 :
使用参数方程求导公式和复合函数求导。
详细步骤 :
当 t ≥ 0 t\geq0 t ≥ 0 时,x = 3 t , y = t sin t x=3t, y=t\sin t x = 3 t , y = t sin t ,所以 y = x 3 sin x 3 y=\frac{x}{3}\sin\frac{x}{3} y = 3 x sin 3 x
当 t < 0 t<0 t < 0 时,x = t , y = − t sin t x=t, y=-t\sin t x = t , y = − t sin t ,所以 y = − x sin x y=-x\sin x y = − x sin x
因此 f ( x ) = { x 3 sin x 3 , x ≥ 0 − x sin x , x < 0 f(x)=\begin{cases}\frac{x}{3}\sin\frac{x}{3}, & x\geq0\\-x\sin x, & x<0\end{cases} f ( x ) = { 3 x sin 3 x , − x sin x , x ≥ 0 x < 0
计算左导数:
f − ′ ( 0 ) = lim x → 0 − − x sin x − 0 x = − lim x → 0 − sin x = 0 f'_-(0)=\lim\limits_{x\to0^-}\frac{-x\sin x-0}{x}=-\lim\limits_{x\to0^-}\sin x=0 f − ′ ( 0 ) = x → 0 − lim x − x s i n x − 0 = − x → 0 − lim sin x = 0
计算右导数:
f + ′ ( 0 ) = lim x → 0 + x 3 sin x 3 − 0 x = lim x → 0 + sin x 3 3 = 0 f'_+(0)=\lim\limits_{x\to0^+}\frac{\frac{x}{3}\sin\frac{x}{3}-0}{x}=\lim\limits_{x\to0^+}\frac{\sin\frac{x}{3}}{3}=0 f + ′ ( 0 ) = x → 0 + lim x 3 x s i n 3 x − 0 = x → 0 + lim 3 s i n 3 x = 0
由于左导数和右导数相等,所以 f ′ ( 0 ) = 0 f'(0)=0 f ′ ( 0 ) = 0
答案 :f ′ ( 0 ) = 0 f'(0)=0 f ′ ( 0 ) = 0
练习 8
改编自2024考研数学一第1题
已知函数 f ( x ) = ∫ 0 x e cos t d t f(x)=\int_0^x e^{\cos t}dt f ( x ) = ∫ 0 x e c o s t d t ,求 f ′ ( x ) f'(x) f ′ ( x ) 和 f ′ ′ ( x ) f''(x) f ′′ ( x ) 。
参考答案
解题思路 :
使用积分上限函数求导公式和复合函数求导。
详细步骤 :
根据积分上限函数求导公式:
f ′ ( x ) = e cos x f'(x)=e^{\cos x} f ′ ( x ) = e c o s x
对 f ′ ( x ) f'(x) f ′ ( x ) 再次求导,使用复合函数求导:
设 u = cos x u=\cos x u = cos x ,则 f ′ ( x ) = e u f'(x)=e^u f ′ ( x ) = e u
d d x ( e u ) = e u ⋅ d u d x = e cos x ⋅ ( − sin x ) = − e cos x sin x \frac{d}{dx}(e^u)=e^u\cdot\frac{du}{dx}=e^{\cos x}\cdot(-\sin x)=-e^{\cos x}\sin x d x d ( e u ) = e u ⋅ d x d u = e c o s x ⋅ ( − sin x ) = − e c o s x sin x
答案 :
f ′ ( x ) = e cos x f'(x)=e^{\cos x} f ′ ( x ) = e c o s x
f ′ ′ ( x ) = − e cos x sin x f''(x)=-e^{\cos x}\sin x f ′′ ( x ) = − e c o s x sin x
练习 9
改编自2025考研数学一第1题
已知函数 f ( x ) = ∫ 0 x e t 2 sin t d t f(x) = \int_0^x e^{t^2} \sin t\,dt f ( x ) = ∫ 0 x e t 2 sin t d t ,求 f ′ ( x ) f'(x) f ′ ( x ) 和 f ′ ′ ( x ) f''(x) f ′′ ( x ) 。
参考答案
解题思路 :
使用积分上限函数求导公式和复合函数求导。
详细步骤 :
根据积分上限函数求导公式:
f ′ ( x ) = e x 2 sin x f'(x) = e^{x^2} \sin x f ′ ( x ) = e x 2 sin x
对 f ′ ( x ) f'(x) f ′ ( x ) 再次求导,使用乘积法则和复合函数求导:
设 u = e x 2 u = e^{x^2} u = e x 2 ,v = sin x v = \sin x v = sin x
u ′ = e x 2 ⋅ 2 x = 2 x e x 2 u' = e^{x^2} \cdot 2x = 2x e^{x^2} u ′ = e x 2 ⋅ 2 x = 2 x e x 2 (复合函数求导)
v ′ = cos x v' = \cos x v ′ = cos x
应用乘积法则:
f ′ ′ ( x ) = u ′ v + u v ′ = 2 x e x 2 ⋅ sin x + e x 2 ⋅ cos x f''(x) = u'v + uv' = 2x e^{x^2} \cdot \sin x + e^{x^2} \cdot \cos x f ′′ ( x ) = u ′ v + u v ′ = 2 x e x 2 ⋅ sin x + e x 2 ⋅ cos x
= 2 x e x 2 sin x + e x 2 cos x = 2x e^{x^2} \sin x + e^{x^2} \cos x = 2 x e x 2 sin x + e x 2 cos x
答案 :
f ′ ( x ) = e x 2 sin x f'(x) = e^{x^2} \sin x f ′ ( x ) = e x 2 sin x
f ′ ′ ( x ) = 2 x e x 2 sin x + e x 2 cos x f''(x) = 2x e^{x^2} \sin x + e^{x^2} \cos x f ′′ ( x ) = 2 x e x 2 sin x + e x 2 cos x
练习 10
改编自2022考研数学一第17题
设 y = y ( x ) y=y(x) y = y ( x ) 满足 y ′ + 1 2 x y = 2 + x y'+\frac{1}{2\sqrt{x}}y=2+\sqrt{x} y ′ + 2 x 1 y = 2 + x ,y ( 1 ) = 3 y(1)=3 y ( 1 ) = 3 ,求 y ( x ) y(x) y ( x ) 的表达式。
参考答案
解题思路 :
使用一阶线性微分方程的求解方法。
详细步骤 :
这是一个一阶线性微分方程:y ′ + 1 2 x y = 2 + x y'+\frac{1}{2\sqrt{x}}y=2+\sqrt{x} y ′ + 2 x 1 y = 2 + x
积分因子:μ ( x ) = e ∫ 1 2 x d x = e x \mu(x)=e^{\int\frac{1}{2\sqrt{x}}dx}=e^{\sqrt{x}} μ ( x ) = e ∫ 2 x 1 d x = e x
方程两边乘以积分因子:
e x y ′ + e x 1 2 x y = ( 2 + x ) e x e^{\sqrt{x}}y'+e^{\sqrt{x}}\frac{1}{2\sqrt{x}}y=(2+\sqrt{x})e^{\sqrt{x}} e x y ′ + e x 2 x 1 y = ( 2 + x ) e x
左边可以写成:( e x y ) ′ = ( 2 + x ) e x (e^{\sqrt{x}}y)'=(2+\sqrt{x})e^{\sqrt{x}} ( e x y ) ′ = ( 2 + x ) e x
积分得:e x y = ∫ ( 2 + x ) e x d x e^{\sqrt{x}}y=\int(2+\sqrt{x})e^{\sqrt{x}}dx e x y = ∫ ( 2 + x ) e x d x
计算积分:∫ ( 2 + x ) e x d x = 2 ∫ e x d x + ∫ x e x d x \int(2+\sqrt{x})e^{\sqrt{x}}dx=2\int e^{\sqrt{x}}dx+\int\sqrt{x}e^{\sqrt{x}}dx ∫ ( 2 + x ) e x d x = 2 ∫ e x d x + ∫ x e x d x
设 u = x u=\sqrt{x} u = x ,则 d x = 2 u d u dx=2udu d x = 2 u d u ,积分变为:
2 ∫ e u ⋅ 2 u d u + ∫ u e u ⋅ 2 u d u = 4 ∫ u e u d u + 2 ∫ u 2 e u d u 2\int e^u\cdot2udu+\int ue^u\cdot2udu=4\int ue^udu+2\int u^2e^udu 2 ∫ e u ⋅ 2 u d u + ∫ u e u ⋅ 2 u d u = 4 ∫ u e u d u + 2 ∫ u 2 e u d u
使用分部积分法求解,最终得到:
y ( x ) = e − x ( 2 x e x + C ) y(x)=e^{-\sqrt{x}}\left(2x e^{\sqrt{x}}+C\right) y ( x ) = e − x ( 2 x e x + C )
由 y ( 1 ) = 3 y(1)=3 y ( 1 ) = 3 ,得 C = e C=e C = e ,所以:
y ( x ) = e − x ( 2 x e x + e ) y(x)=e^{-\sqrt{x}}\left(2x e^{\sqrt{x}}+e\right) y ( x ) = e − x ( 2 x e x + e )
答案 :y ( x ) = e − x ( 2 x e x + e ) y(x)=e^{-\sqrt{x}}\left(2x e^{\sqrt{x}}+e\right) y ( x ) = e − x ( 2 x e x + e )
总结
中英对照
中文术语 英文术语 音标 说明 复合函数 composite function /ˈkɒmpəzɪt ˈfʌŋkʃən/ 由多个函数复合而成的函数 链式法则 chain rule /tʃeɪn ruːl/ 复合函数求导的基本法则 外层函数 outer function /ˈaʊtə ˈfʌŋkʃən/ 复合函数中最外层的函数 内层函数 inner function /ˈɪnə ˈfʌŋkʃən/ 复合函数中最内层的函数 逐层求导 differentiate layer by layer /dɪfəˈrenʃɪeɪt ˈleɪə baɪ ˈleɪə/ 从外到内逐层使用链式法则求导
1 Exploring Functions in Advanced Mathematics
先修课程
Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程
2 The World of Limits in Advanced Mathematics
先修课程
Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程
3 Continuity in Advanced Calculus
先修课程
A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.
前往课程
4 Differential Calculus of One Variable
当前课程
A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.
前往课程