导航菜单

Leibniz and the Rise of Differentials

A geometric puzzle

Leibniz, 1675: How do we draw the tangent to any curve? He experiments with the parabola y=x2y=x^2, comparing secant slopes as two points approach each other.

For points (x,x2)(x,x^2) and (x+Δx,(x+Δx)2)(x+\Delta x,(x+\Delta x)^2), the secant slope is

(x+Δx)2x2Δx=2x+Δx2x(Δx0).\frac{(x+\Delta x)^2 - x^2}{\Delta x} = 2x + \Delta x \to 2x \quad (\Delta x \to 0).

The limit is the tangent slope.

Differentials

Leibniz introduces differentials to formalize this limit:

dydx=limΔx0f(x+Δx)f(x)Δx.\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}.
  • dxdx: an infinitesimal change of xx
  • dydy: the corresponding infinitesimal change of yy
  • dydx\dfrac{dy}{dx}: their ratio, the derivative

Rules that survived

  • Power rule: (xn)=nxn1(x^n)' = nx^{n-1}
  • Exponential: (ex)=ex(e^x)' = e^x
  • Logarithm: (lnx)=1x(\ln x)' = \dfrac{1}{x}
  • Product: d(uv)=udv+vdud(uv) = u\,dv + v\,du
  • Quotient: d ⁣(uv)=vduudvv2d\!\left(\dfrac{u}{v}\right) = \dfrac{v\,du - u\,dv}{v^2}
  • Chain rule: dy=dydududx  dxdy = \dfrac{dy}{du}\cdot \dfrac{du}{dx}\;dx

These notations and rules, polished by later mathematicians, became the standard calculus language.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
dx,dydx, dy符号d x, d y自变量与函数的无穷小变化量
dydx\frac{dy}{dx}符号d y over d x切线斜率(导数)

中英对照

中文术语英文术语音标说明
微分differential/ˌdɪfəˈrɛnʃəl/用无穷小量刻画变化
导数derivative/dɪˈrɪvətɪv/变化率或切线斜率
割线secant line/ˈsiːkənt laɪn/连接曲线上两点的直线
切线tangent line/ˈtændʒənt laɪn/与曲线在一点相切的直线
链式法则chain rule/tʃeɪn ruːl/复合函数的求导规则

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  3. 3

    Continuity in Advanced Calculus

    先修课程

    A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.

    前往课程
  4. 4

    Differential Calculus of One Variable

    当前课程

    A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.

    前往课程

搜索