导航菜单

Geometric Meaning of Derivatives

Derivatives connect algebra with geometry. Thinking of f(x)f'(x) as a slope on the graph makes local behavior, monotonicity, and optimization much more intuitive.

Tangent slope

Basic idea

The derivative f(x0)f'(x_0) is the slope of the tangent line to y=f(x)y = f(x) at the point (x0,f(x0))(x_0, f(x_0)).

y = x² 及其切线

图示展示了函数在特定点的切线。切线的斜率即为该点的导数值。

Tangent equation

Through (x0,f(x0))(x_0, f(x_0)), the tangent line is

yf(x0)=f(x0)(xx0),y - f(x_0) = f'(x_0)(x - x_0),

or equivalently y=f(x0)+f(x0)(xx0)y = f(x_0) + f'(x_0)(x - x_0).

Normal equation

The normal line is perpendicular to the tangent, with slope kn=1f(x0)k_n = -\dfrac{1}{f'(x_0)}:

yf(x0)=1f(x0)(xx0).y - f(x_0) = -\frac{1}{f'(x_0)}(x - x_0).

Note: if f(x0)=0f'(x_0) = 0, the tangent is horizontal and the normal is vertical; if the derivative does not exist, the tangent is vertical.

Geometry vs. function behavior

Monotonicity and derivative sign

  • f(x0)>0f'(x_0) > 0: locally increasing.
  • f(x0)<0f'(x_0) < 0: locally decreasing.
  • f(x0)=0f'(x_0) = 0: candidate for extrema or plateau.

Extrema and slopes

At a local extremum, the tangent is typically horizontal:

  1. Local maximum: f(x0)=0f'(x_0) = 0 and the derivative changes from ++ to -.
  2. Local minimum: f(x0)=0f'(x_0) = 0 and the derivative changes from - to ++.
  3. Inflection candidate: f(x0)=0f'(x_0) = 0 but no sign change.

Concavity

The second derivative f(x)f''(x) reflects bending:

  • f(x)>0f''(x) > 0: curve bends upward (convex/concave up).
  • f(x)<0f''(x) < 0: curve bends downward (concave/convex down).

Uses of tangents

Linear approximation

f(x)f(x0)+f(x0)(xx0)f(x) \approx f(x_0) + f'(x_0)(x - x_0)

Good when xx is close to x0x_0.

Error estimation

E(x)=f(x)[f(x0)+f(x0)(xx0)]E(x) = f(x) - \big[f(x_0) + f'(x_0)(x - x_0)\big]

As xx0x \to x_0, the error E(x)E(x) is higher order than (xx0)(x - x_0).

Optimization intuition

  • Horizontal tangents mark potential extrema.
  • The negative gradient points toward fastest descent.
  • Newton’s method replaces the curve with its tangent to iterate quickly.

Special geometric cases

Non-differentiable points

  1. Cusp: e.g., f(x)=xf(x) = |x| at x=0x = 0.
  2. Vertical tangent: e.g., f(x)=x3f(x) = \sqrt[3]{x} at x=0x = 0.
  3. Oscillatory point: derivative fails due to rapid oscillation.

Horizontal tangents

If f(x0)=0f'(x_0) = 0, possibilities include:

  1. Extremum: local peak or valley.
  2. Inflection: concavity changes while slope is zero.
  3. Plateau: flat region with slow change.

练习题

练习 1

Find the tangent and normal lines of f(x)=x2f(x) = x^2 at (1,1)(1, 1).

参考答案
  1. f(x)=2xf'(x) = 2x, so f(1)=2f'(1) = 2.
  2. Tangent: y1=2(x1)y - 1 = 2(x - 1)y=2x1y = 2x - 1.
  3. Normal: y1=12(x1)y - 1 = -\dfrac{1}{2}(x - 1)y=12x+32y = -\dfrac{1}{2}x + \dfrac{3}{2}.

练习 2

Show that if f(x)>0f'(x) > 0 for all x(a,b)x \in (a, b), then ff is strictly increasing on (a,b)(a, b).

参考答案

Let x1<x2x_1 < x_2 in (a,b)(a, b). By the Mean Value Theorem, there exists ξ(x1,x2)\xi \in (x_1, x_2) such that

f(x2)f(x1)=f(ξ)(x2x1)f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1). Because f(ξ)>0f'(\xi) > 0 and x2x1>0x_2 - x_1 > 0, we get f(x2)>f(x1)f(x_2) > f(x_1), so ff is strictly increasing.

练习 3

Find all extrema of f(x)=x33x2+2f(x) = x^3 - 3x^2 + 2 and classify them.

参考答案
  1. f(x)=3x26x=3x(x2)f'(x) = 3x^2 - 6x = 3x(x - 2) ⇒ critical points at x=0,2x = 0, 2.
  2. f(x)=6x6f''(x) = 6x - 6:
    • f(0)=6<0f''(0) = -6 < 0 ⇒ local maximum at x=0x = 0, value f(0)=2f(0) = 2.
    • f(2)=6>0f''(2) = 6 > 0 ⇒ local minimum at x=2x = 2, value f(2)=2f(2) = -2.

总结

本文出现的符号

符号类型读音/说明在本文中的含义
f(x)f'(x)数学符号“f prime of x”曲线在点 xx 处的切线斜率
f(x)f''(x)数学符号“f double prime of x”二阶导数,刻画凹凸性
ξ\xi希腊字母Xi(克西)中值定理中的某一点

中英对照

中文术语英文术语音标说明
切线tangent line/ˈtændʒənt laɪn/与曲线在一点相切的直线
切线斜率slope of tangent line/sləʊp əv ˈtændʒənt laɪn/切线在切点处的斜率,等于导数
法线normal line/ˈnɔːməl laɪn/与切线垂直的直线
单调递增monotonically increasing/mɒnəˈtɒnɪkli ɪnˈkriːsɪŋ/函数值随自变量增大而增大
单调递减monotonically decreasing/mɒnəˈtɒnɪkli dɪˈkriːsɪŋ/函数值随自变量增大而减小
极值extremum/ɪkˈstriːməm/函数在某点的极大值或极小值
拐点inflection point/ɪnˈflekʃən pɔɪnt/函数改变凹凸性的点
凹凸性concavity/kənˈkævəti/曲线的弯曲方向
线性近似linear approximation/ˈlɪniə əprɒksɪˈmeɪʃən/用切线近似函数值
误差估计error estimation/ˈerə estɪˈmeɪʃən/估计近似值的误差大小
牛顿法Newton’s method/ˈnjuːtənz ˈmeθəd/利用切线进行迭代求解的方法
尖点cusp/kʌsp/曲线上的尖锐转折点
不可导non-differentiable/nɒn dɪfəˈrenʃəbl/函数在某点处导数不存在

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  3. 3

    Continuity in Advanced Calculus

    先修课程

    A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.

    前往课程
  4. 4

    Differential Calculus of One Variable

    当前课程

    A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.

    前往课程

搜索