Geometric Meaning of Derivatives
Derivatives connect algebra with geometry. Thinking of as a slope on the graph makes local behavior, monotonicity, and optimization much more intuitive.
Tangent slope
Basic idea
The derivative is the slope of the tangent line to at the point .
y = x² 及其切线
图示展示了函数在特定点的切线。切线的斜率即为该点的导数值。
Tangent equation
Through , the tangent line is
or equivalently .
Normal equation
The normal line is perpendicular to the tangent, with slope :
Note: if , the tangent is horizontal and the normal is vertical; if the derivative does not exist, the tangent is vertical.
Geometry vs. function behavior
Monotonicity and derivative sign
- : locally increasing.
- : locally decreasing.
- : candidate for extrema or plateau.
Extrema and slopes
At a local extremum, the tangent is typically horizontal:
- Local maximum: and the derivative changes from to .
- Local minimum: and the derivative changes from to .
- Inflection candidate: but no sign change.
Concavity
The second derivative reflects bending:
- : curve bends upward (convex/concave up).
- : curve bends downward (concave/convex down).
Uses of tangents
Linear approximation
Good when is close to .
Error estimation
As , the error is higher order than .
Optimization intuition
- Horizontal tangents mark potential extrema.
- The negative gradient points toward fastest descent.
- Newton’s method replaces the curve with its tangent to iterate quickly.
Special geometric cases
Non-differentiable points
- Cusp: e.g., at .
- Vertical tangent: e.g., at .
- Oscillatory point: derivative fails due to rapid oscillation.
Horizontal tangents
If , possibilities include:
- Extremum: local peak or valley.
- Inflection: concavity changes while slope is zero.
- Plateau: flat region with slow change.
练习题
练习 1
Find the tangent and normal lines of at .
- , so .
- Tangent: ⇒ .
- Normal: ⇒ .
练习 2
Show that if for all , then is strictly increasing on .
Let in . By the Mean Value Theorem, there exists such that
(Xi):希腊字母,读作“克西”,常用来表示中值定理中的某一点。
. Because and , we get , so is strictly increasing.
练习 3
Find all extrema of and classify them.
- ⇒ critical points at .
- :
- ⇒ local maximum at , value .
- ⇒ local minimum at , value .
总结
本文出现的符号
| 符号 | 类型 | 读音/说明 | 在本文中的含义 |
|---|---|---|---|
| 数学符号 | “f prime of x” | 曲线在点 处的切线斜率 | |
| 数学符号 | “f double prime of x” | 二阶导数,刻画凹凸性 | |
| 希腊字母 | Xi(克西) | 中值定理中的某一点 |
中英对照
| 中文术语 | 英文术语 | 音标 | 说明 |
|---|---|---|---|
| 切线 | tangent line | /ˈtændʒənt laɪn/ | 与曲线在一点相切的直线 |
| 切线斜率 | slope of tangent line | /sləʊp əv ˈtændʒənt laɪn/ | 切线在切点处的斜率,等于导数 |
| 法线 | normal line | /ˈnɔːməl laɪn/ | 与切线垂直的直线 |
| 单调递增 | monotonically increasing | /mɒnəˈtɒnɪkli ɪnˈkriːsɪŋ/ | 函数值随自变量增大而增大 |
| 单调递减 | monotonically decreasing | /mɒnəˈtɒnɪkli dɪˈkriːsɪŋ/ | 函数值随自变量增大而减小 |
| 极值 | extremum | /ɪkˈstriːməm/ | 函数在某点的极大值或极小值 |
| 拐点 | inflection point | /ɪnˈflekʃən pɔɪnt/ | 函数改变凹凸性的点 |
| 凹凸性 | concavity | /kənˈkævəti/ | 曲线的弯曲方向 |
| 线性近似 | linear approximation | /ˈlɪniə əprɒksɪˈmeɪʃən/ | 用切线近似函数值 |
| 误差估计 | error estimation | /ˈerə estɪˈmeɪʃən/ | 估计近似值的误差大小 |
| 牛顿法 | Newton’s method | /ˈnjuːtənz ˈmeθəd/ | 利用切线进行迭代求解的方法 |
| 尖点 | cusp | /kʌsp/ | 曲线上的尖锐转折点 |
| 不可导 | non-differentiable | /nɒn dɪfəˈrenʃəbl/ | 函数在某点处导数不存在 |
课程路线图
- 1
Exploring Functions in Advanced Mathematics
先修课程Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程 - 2
The World of Limits in Advanced Mathematics
先修课程Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程 - 3
Continuity in Advanced Calculus
先修课程A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.
前往课程 - 4
Differential Calculus of One Variable
当前课程A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.
前往课程