导航菜单

Basic Concepts of the Derivative

The derivative measures an instantaneous rate of change—how fast f(x)f(x) moves when xx moves by a tiny amount.

Average vs. instantaneous rate

Average rate on [x0,x0+Δx][x_0, x_0+\Delta x]:

ΔyΔx=f(x0+Δx)f(x0)Δx.\frac{\Delta y}{\Delta x} = \frac{f(x_0+\Delta x) - f(x_0)}{\Delta x}.

Instantaneous rate (the derivative):

f(x0)=limΔx0f(x0+Δx)f(x0)Δx.f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0+\Delta x) - f(x_0)}{\Delta x}.

Geometric picture

Average rate = secant slope; instantaneous rate = tangent slope. Explore this with f(x)=x2f(x)=x^2:

x = 1.0
函数值
f(1.0) = 1.00
瞬时变化率(导数)
f'(1.0) = 2.00
📊 观察要点:
蓝色曲线是函数 f(x) = x² 的图像
橙色虚线是在选定点的切线
红色点是切点,标签显示了该点的坐标和切线斜率(即瞬时变化率)
拖动滑块可以看到,随着 x 的变化,切线的斜率也在变化

Formal definition

Derivative at a point

If

limΔx0f(x0+Δx)f(x0)Δx\lim_{\Delta x \to 0} \frac{f(x_0+\Delta x) - f(x_0)}{\Delta x}

exists, ff is differentiable at x0x_0, and the limit is f(x0)f'(x_0) (also written dydxx0\dfrac{dy}{dx}\big|_{x_0}).

Why dydx\dfrac{dy}{dx}?

  • ΔyΔx\dfrac{\Delta y}{\Delta x}: slope of a secant (finite increments).
  • dydx\dfrac{dy}{dx}: slope of the tangent (infinitesimal increments).
Δx = 1.00
Δy (Delta y):函数值的实际变化量 (曲线上的高度差)
dy (微分 y):切线上的变化量 (线性近似)
💡 观察:当 Δx 变得很小很小时,Δy 和 dy 几乎重合。这就是为什么我们可以用 dy/dx 来表示导数。

Equivalent forms

f(x0)=limh0f(x0+h)f(x0)horf(x0)=limxx0f(x)f(x0)xx0.f'(x_0) = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} \quad\text{or}\quad f'(x_0) = \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}.

One-sided derivatives

  • Left: f(x0)=limh0f(x0+h)f(x0)hf'_-(x_0) = \lim_{h\to 0^-} \dfrac{f(x_0+h)-f(x_0)}{h}
  • Right: f+(x0)=limh0+f(x0+h)f(x0)hf'_+(x_0) = \lim_{h\to 0^+} \dfrac{f(x_0+h)-f(x_0)}{h}

Differentiable at x0x_0 ⇔ both exist and are equal.

Differentiability vs. continuity

定理

If ff is differentiable at x0x_0, then ff is continuous at x0x_0.

证明
  1. Differentiability gives the limit of the difference quotient.
  2. Multiply by hh and send h0h\to 0 to see f(x0+h)f(x0)f(x_0+h)\to f(x_0).
  3. Continuity does not imply differentiability (e.g., x|x| at 0).

Examples and practice

Example: f(x)=x2f(x)=x^2

f(x0)=limΔx0(x0+Δx)2x02Δx=2x0.f'(x_0) = \lim_{\Delta x\to 0} \frac{(x_0+\Delta x)^2 - x_0^2}{\Delta x} = 2x_0.

练习 1

Differentiate f(x)=1xf(x) = \dfrac{1}{x} at x0x_0 using the definition.

参考答案
f(x0)=limΔx01x0+Δx1x0Δx=1x02.f'(x_0) = \lim_{\Delta x\to 0} \frac{\frac{1}{x_0+\Delta x}-\frac{1}{x_0}}{\Delta x} = -\frac{1}{x_0^2}.

练习 2

Is f(x)=xf(x)=|x| differentiable at 00?

参考答案

f(0)=1, f+(0)=1f'_-(0) = -1,\ f'_+(0)=1 ⇒ not differentiable at 00.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
Δx\Delta x数学符号Delta x自变量的有限增量
dxdx数学符号“dee x”自变量的无穷小增量
dydy数学符号“dee y”因变量的无穷小增量

中英对照

中文术语英文术语音标说明
导数derivative/dɪˈrɪvətɪv/函数在点的瞬时变化率
平均变化率average rate of change/ˈævərɪdʒ reɪt əv tʃeɪndʒ/有限区间的变化率
瞬时变化率instantaneous rate of change/ɪnstənˈteɪniəs reɪt əv tʃeɪndʒ/极限意义下的变化率
微分differential/ˌdɪfəˈrɛnʃəl/无穷小增量
可导differentiable/ˌdɪfəˈrɛnʃəbl/导数存在
连续continuous/kənˈtɪnjʊəs/函数无跳跃

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  3. 3

    Continuity in Advanced Calculus

    先修课程

    A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.

    前往课程
  4. 4

    Differential Calculus of One Variable

    当前课程

    A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.

    前往课程

搜索