导航菜单

Mean Value Theorems for Derivatives

Mean value theorems connect an average rate of change on an interval with an instantaneous rate of change at some interior point. They underpin many proofs and estimates in calculus.

Rolle’s Theorem

定理 1

If ff is continuous on [a,b][a,b], differentiable on (a,b)(a,b), and f(a)=f(b)f(a) = f(b), then there exists ξ(a,b)\xi \in (a,b) with f(ξ)=0f'(\xi) = 0.

几何解释

If a smooth curve starts and ends at the same height, some interior point must have a horizontal tangent.

证明
  1. By the Extreme Value Theorem, ff attains a max/min on [a,b][a,b].
  2. If an extreme point lies inside (a,b)(a,b), the derivative there is 00.
  3. If both extrema are at endpoints, ff is constant and any interior point works.

Example

Show that x33x+1=0x^3 - 3x + 1 = 0 has at most one real root in (0,1)(0,1).

  • Assume two roots x1x2x_1 \ne x_2 in (0,1)(0,1).
  • Then f(x1)=f(x2)=0f(x_1) = f(x_2) = 0. Rolle gives ξ\xi with f(ξ)=0f'(\xi) = 0.
  • But f(x)=3(x21)<0f'(x) = 3(x^2 - 1) < 0 on (0,1)(0,1), contradiction.

Lagrange Mean Value Theorem (MVT)

定理 2

If ff is continuous on [a,b][a,b] and differentiable on (a,b)(a,b), there exists ξ(a,b)\xi \in (a,b) such that

f(ξ)=f(b)f(a)ba.f'(\xi) = \frac{f(b) - f(a)}{b - a}.
几何解释

At some point, the tangent slope equals the slope of the secant line joining (a,f(a))(a,f(a)) and (b,f(b))(b,f(b)).

证明
  1. Define g(x)=f(x)f(a)f(b)f(a)ba(xa)g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x-a).
  2. Then g(a)=g(b)=0g(a) = g(b) = 0.
  3. By Rolle, ξ\exists \xi with g(ξ)=0g'(\xi) = 0.
  4. Hence f(ξ)=f(b)f(a)baf'(\xi) = \dfrac{f(b) - f(a)}{b-a}.

Examples

  1. Prove sinxsinyxy|\sin x - \sin y| \le |x - y|.
    Apply MVT to f(t)=sintf(t) = \sin t on [x,y][x,y], so cosξ=sinysinxyx\cos \xi = \dfrac{\sin y - \sin x}{y - x} with cosξ1|\cos \xi| \le 1.

  2. For f(x)=x3f(x) = x^3 on [1,2][1,2], MVT gives 3ξ2=73\xi^2 = 7, so ξ=73\xi = \sqrt{\tfrac{7}{3}}.

Cauchy Mean Value Theorem

定理 3

If f,gf,g are continuous on [a,b][a,b], differentiable on (a,b)(a,b), and g(x)0g'(x) \ne 0, then ξ(a,b)\exists \xi \in (a,b) such that

f(ξ)g(ξ)=f(b)f(a)g(b)g(a).\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.
几何解释

For two smooth curves sharing parameter xx, some pair of points has tangent-slope ratio equal to the secant-slope ratio.

证明
  1. Let h(x)=f(x)f(a)f(b)f(a)g(b)g(a)(g(x)g(a))h(x) = f(x) - f(a) - \dfrac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a)).
  2. h(a)=h(b)=0h(a) = h(b) = 0.
  3. By Rolle, h(ξ)=0h'(\xi) = 0.
  4. Rearranging yields the conclusion.

Example

Take f(x)=x2f(x) = x^2, g(x)=x3g(x) = x^3 on [1,2][1,2]. Cauchy MVT gives 2ξ3ξ2=37\dfrac{2\xi}{3\xi^2} = \dfrac{3}{7}, so ξ=149\xi = \dfrac{14}{9}.

Relations among the theorems

  • Rolle is the base case.
  • Lagrange MVT generalizes Rolle by dropping f(a)=f(b)f(a)=f(b).
  • Cauchy MVT generalizes Lagrange to two functions; letting g(x)=xg(x)=x recovers Lagrange.

Applications

  1. Inequalities: ex>1+xe^x > 1 + x for x>0x>0 (apply MVT to exe^x on [0,x][0,x]).
  2. Root existence: sign change plus continuity ensures a root (Intermediate Value), and MVT refines counts.
  3. Monotonicity: if f(x)>0f'(x)>0 on an interval, ff is strictly increasing there.
  4. Convexity: f(x)>0f''(x)>0 implies ff is convex (and secants lie above the graph).

Common pitfalls

  • Forgetting to check continuity on the closed interval.
  • Forgetting differentiability on the open interval.
  • Applying Cauchy MVT without ensuring g(x)0g'(x)\ne 0.
  • Using an interval where f(a)=f(b)f(a)=f(b) fails for Rolle.

Extensions

  1. Integral mean value theorem: abf(x)dx=f(ξ)(ba)\int_a^b f(x)\,dx = f(\xi)(b-a) for continuous ff.
  2. Taylor’s theorem remainder: ξ\exists \xi between xx and x0x_0 such that
    f(x)=k=0nf(k)(x0)k!(xx0)k+f(n+1)(ξ)(n+1)!(xx0)n+1.f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}.

练习题

练习 1

Assume ff is continuous on [a,b][a,b], differentiable on (a,b)(a,b), and f(a)=f(b)f(a)=f(b). Show that ξ(a,b)\exists \xi \in (a,b) with f(ξ)=0f'(\xi)=0.

参考答案

Rolle’s theorem applies directly because all hypotheses are satisfied, so f(ξ)=0f'(\xi)=0 for some ξ(a,b)\xi\in(a,b).

练习 2

Prove cosxcosyxy|\cos x - \cos y| \le |x - y|.

参考答案

Apply MVT to f(t)=costf(t)=\cos t on [x,y][x,y]: sinξ=cosycosxyx-\sin \xi = \dfrac{\cos y - \cos x}{y - x}. Since sinξ1|\sin \xi|\le 1, the inequality follows.

练习 3

Verify Cauchy MVT for f(x)=x2f(x) = x^2, g(x)=x3g(x) = x^3 on [1,2][1,2].

参考答案

2ξ3ξ2=37\dfrac{2\xi}{3\xi^2} = \dfrac{3}{7}ξ=149\xi = \dfrac{14}{9}.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
ξ\xi希腊字母Xi(克西)中值定理中存在性的那个点

中英对照

中文术语英文术语音标说明
微分中值定理mean value theorem/miːn ˈvæljuː ˈθɪərəm/平均变化率等于某点瞬时变化率
罗尔定理Rolle’s theorem/rəʊlz ˈθɪərəm/端点相等时存在水平切线
拉格朗日中值定理Lagrange mean value theorem/ləˈɡrɑːndʒ ˌmiːn ˈvæljuː ˈθɪərəm/割线斜率等于某点切线斜率
柯西中值定理Cauchy mean value theorem/ˈkəʊʃi ˌmiːn ˈvæljuː ˈθɪərəm/两函数导数比等于函数增量比
割线secant line/ˈsiːkənt laɪn/连接区间端点的直线
单调性monotonicity/ˌmɒnəʊtəˈnɪsɪti/函数增减趋势
凸函数convex function/ˈkɒnvɛks ˈfʌŋkʃən/二阶导数大于零的函数

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  3. 3

    Continuity in Advanced Calculus

    先修课程

    A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.

    前往课程
  4. 4

    Differential Calculus of One Variable

    当前课程

    A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.

    前往课程

搜索