参数方程求导
参数方程求导是微积分中的重要技巧,用于求由参数方程确定的函数的导数。
参数方程求导公式
参数方程的高阶导数
二阶导数公式
三阶导数公式
参数方程求导的应用
1. 曲线的切线斜率
参数方程求导的主要应用是求曲线在某点的切线斜率。
例子 :对于参数方程 x = t 2 x = t^2 x = t 2 ,y = t 3 y = t^3 y = t 3 ,在 t = 1 t = 1 t = 1 处的切线斜率
解 :
d y d x = 3 t 2 2 t = 3 t 2 \frac{dy}{dx} = \frac{3t^2}{2t} = \frac{3t}{2} d x d y = 2 t 3 t 2 = 2 3 t
在 t = 1 t = 1 t = 1 处:d y d x = 3 2 \frac{dy}{dx} = \frac{3}{2} d x d y = 2 3
2. 曲线的几何性质
通过参数方程求导可以研究曲线的几何性质,如凸凹性、拐点等。
常见错误和注意事项
1. 参数方程求导错误
错误 :d y d x = d x d y \frac{dy}{dx} = \frac{dx}{dy} d x d y = d y d x
正确 :d y d x = d y / d t d x / d t \frac{dy}{dx} = \frac{dy/dt}{dx/dt} d x d y = d x / d t d y / d t
2. 高阶导数错误
错误 :d 2 y d x 2 = d 2 y d t 2 ⋅ d t d x \frac{d^2y}{dx^2} = \frac{d^2y}{dt^2} \cdot \frac{dt}{dx} d x 2 d 2 y = d t 2 d 2 y ⋅ d x d t
正确 :d 2 y d x 2 = d d t ( d y d x ) ⋅ d t d x \frac{d^2y}{dx^2} = \frac{d}{dt}(\frac{dy}{dx}) \cdot \frac{dt}{dx} d x 2 d 2 y = d t d ( d x d y ) ⋅ d x d t
3. 参数范围问题
在求解过程中要注意参数 t t t 的定义域,避免分母为零的情况。
4. 符号错误
在求高阶导数时,要注意符号的正确性,特别是三角函数的导数。
练习题
练习 1
求参数方程 x = t 2 x = t^2 x = t 2 ,y = t 3 y = t^3 y = t 3 确定的函数的二阶导数。
参考答案
解题思路 :
先求一阶导数,再求二阶导数。
详细步骤 :
一阶导数:d y d x = 3 t 2 2 t = 3 t 2 \frac{dy}{dx} = \frac{3t^2}{2t} = \frac{3t}{2} d x d y = 2 t 3 t 2 = 2 3 t
二阶导数:d 2 y d x 2 = d d t ( 3 t 2 ) ⋅ d t d x \frac{d^2y}{dx^2} = \frac{d}{dt}(\frac{3t}{2}) \cdot \frac{dt}{dx} d x 2 d 2 y = d t d ( 2 3 t ) ⋅ d x d t
d d t ( 3 t 2 ) = 3 2 \frac{d}{dt}(\frac{3t}{2}) = \frac{3}{2} d t d ( 2 3 t ) = 2 3
d t d x = 1 d x / d t = 1 2 t \frac{dt}{dx} = \frac{1}{dx/dt} = \frac{1}{2t} d x d t = d x / d t 1 = 2 t 1
d 2 y d x 2 = 3 2 ⋅ 1 2 t = 3 4 t \frac{d^2y}{dx^2} = \frac{3}{2} \cdot \frac{1}{2t} = \frac{3}{4t} d x 2 d 2 y = 2 3 ⋅ 2 t 1 = 4 t 3
答案 :d 2 y d x 2 = 3 4 t \frac{d^2y}{dx^2} = \frac{3}{4t} d x 2 d 2 y = 4 t 3
练习 2
求参数方程 x = cos t x = \cos t x = cos t ,y = sin t y = \sin t y = sin t 确定的函数的二阶导数。
参考答案
解题思路 :
先求一阶导数,再求二阶导数。
详细步骤 :
一阶导数:d y d x = cos t − sin t = − cot t \frac{dy}{dx} = \frac{\cos t}{-\sin t} = -\cot t d x d y = − s i n t c o s t = − cot t
二阶导数:d 2 y d x 2 = d d t ( − cot t ) ⋅ d t d x \frac{d^2y}{dx^2} = \frac{d}{dt}(-\cot t) \cdot \frac{dt}{dx} d x 2 d 2 y = d t d ( − cot t ) ⋅ d x d t
d d t ( − cot t ) = csc 2 t \frac{d}{dt}(-\cot t) = \csc^2 t d t d ( − cot t ) = csc 2 t
d t d x = 1 d x / d t = 1 − sin t \frac{dt}{dx} = \frac{1}{dx/dt} = \frac{1}{-\sin t} d x d t = d x / d t 1 = − s i n t 1
d 2 y d x 2 = csc 2 t ⋅ 1 − sin t = − csc 3 t \frac{d^2y}{dx^2} = \csc^2 t \cdot \frac{1}{-\sin t} = -\csc^3 t d x 2 d 2 y = csc 2 t ⋅ − s i n t 1 = − csc 3 t
答案 :d 2 y d x 2 = − csc 3 t \frac{d^2y}{dx^2} = -\csc^3 t d x 2 d 2 y = − csc 3 t
练习 3
求参数方程 x = e t x = e^t x = e t ,y = t 2 y = t^2 y = t 2 确定的函数的一阶和二阶导数。
参考答案
解题思路 :
先求一阶导数,再求二阶导数。
详细步骤 :
一阶导数:d y d x = 2 t e t \frac{dy}{dx} = \frac{2t}{e^t} d x d y = e t 2 t
二阶导数:d 2 y d x 2 = d d t ( 2 t e t ) ⋅ d t d x \frac{d^2y}{dx^2} = \frac{d}{dt}(\frac{2t}{e^t}) \cdot \frac{dt}{dx} d x 2 d 2 y = d t d ( e t 2 t ) ⋅ d x d t
d d t ( 2 t e t ) = 2 e t − 2 t e t e 2 t = 2 ( 1 − t ) e t \frac{d}{dt}(\frac{2t}{e^t}) = \frac{2e^t - 2te^t}{e^{2t}} = \frac{2(1-t)}{e^t} d t d ( e t 2 t ) = e 2 t 2 e t − 2 t e t = e t 2 ( 1 − t )
d t d x = 1 d x / d t = 1 e t \frac{dt}{dx} = \frac{1}{dx/dt} = \frac{1}{e^t} d x d t = d x / d t 1 = e t 1
d 2 y d x 2 = 2 ( 1 − t ) e t ⋅ 1 e t = 2 ( 1 − t ) e 2 t \frac{d^2y}{dx^2} = \frac{2(1-t)}{e^t} \cdot \frac{1}{e^t} = \frac{2(1-t)}{e^{2t}} d x 2 d 2 y = e t 2 ( 1 − t ) ⋅ e t 1 = e 2 t 2 ( 1 − t )
答案 :d y d x = 2 t e t \frac{dy}{dx} = \frac{2t}{e^t} d x d y = e t 2 t ,d 2 y d x 2 = 2 ( 1 − t ) e 2 t \frac{d^2y}{dx^2} = \frac{2(1-t)}{e^{2t}} d x 2 d 2 y = e 2 t 2 ( 1 − t )
练习 4
求参数方程 x = a cos t x = a \cos t x = a cos t ,y = b sin t y = b \sin t y = b sin t 确定的函数的一阶导数。
参考答案
解题思路 :
使用参数方程求导公式。
详细步骤 :
d x d t = − a sin t \frac{dx}{dt} = -a \sin t d t d x = − a sin t ,d y d t = b cos t \frac{dy}{dt} = b \cos t d t d y = b cos t
d y d x = b cos t − a sin t = − b a cot t \frac{dy}{dx} = \frac{b \cos t}{-a \sin t} = -\frac{b}{a} \cot t d x d y = − a s i n t b c o s t = − a b cot t
答案 :d y d x = − b a cot t \frac{dy}{dx} = -\frac{b}{a} \cot t d x d y = − a b cot t
练习 5
求参数方程 x = t + sin t x = t + \sin t x = t + sin t ,y = 1 − cos t y = 1 - \cos t y = 1 − cos t 确定的函数的一阶导数。
参考答案
解题思路 :
使用参数方程求导公式。
详细步骤 :
d x d t = 1 + cos t \frac{dx}{dt} = 1 + \cos t d t d x = 1 + cos t ,d y d t = sin t \frac{dy}{dt} = \sin t d t d y = sin t
d y d x = sin t 1 + cos t = 2 sin ( t / 2 ) cos ( t / 2 ) 2 cos 2 ( t / 2 ) = tan ( t / 2 ) \frac{dy}{dx} = \frac{\sin t}{1 + \cos t} = \frac{2\sin(t/2)\cos(t/2)}{2\cos^2(t/2)} = \tan(t/2) d x d y = 1 + c o s t s i n t = 2 c o s 2 ( t /2 ) 2 s i n ( t /2 ) c o s ( t /2 ) = tan ( t /2 )
答案 :d y d x = tan ( t / 2 ) \frac{dy}{dx} = \tan(t/2) d x d y = tan ( t /2 )
总结
中英对照
中文术语 英文术语 音标 说明 参数方程 parametric equation /pærəˈmetrɪk ɪˈkweɪʒən/ 用参数表示曲线的方程 参数方程求导 derivative of parametric equation /dɪˈrɪvətɪv əv pærəˈmetrɪk ɪˈkweɪʒən/ 对参数方程求导数的方法 高阶导数 higher-order derivative /ˈhaɪə ˈɔːdə dɪˈrɪvətɪv/ 函数的二阶及以上的导数
1 Exploring Functions in Advanced Mathematics
先修课程
Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程
2 The World of Limits in Advanced Mathematics
先修课程
Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程
3 Continuity in Advanced Calculus
先修课程
A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.
前往课程
4 Differential Calculus of One Variable
当前课程
A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.
前往课程