导航菜单

Physical Meaning of the Derivative

Derivatives in physics express instantaneous rates of change. They tie motion, force, fields, thermodynamics, and even economic growth to a single mathematical idea.

Instantaneous rate of change

For a quantity yy depending on xx,

dydx=limΔx0ΔyΔx\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}

Kinematics

  • Velocity: displacement rate
    v(t)=dsdt=limΔt0s(t+Δt)s(t)Δtv(t) = \frac{ds}{dt} = \lim_{\Delta t \to 0} \frac{s(t + \Delta t) - s(t)}{\Delta t}
  • Acceleration: velocity rate
    a(t)=dvdt=d2sdt2a(t) = \frac{dv}{dt} = \frac{d^2 s}{dt^2}
  • Jerk: acceleration rate
    j(t)=dadt=d3sdt3j(t) = \frac{da}{dt} = \frac{d^3 s}{dt^3}

Mechanics

  • Power: P(t)=dWdtP(t) = \frac{dW}{dt}
  • Force (momentum rate): F=dpdt=d(mv)dt\vec{F} = \frac{d\vec{p}}{dt} = \frac{d(m\vec{v})}{dt}
    For constant mass: F=ma\vec{F} = m\vec{a}.
  • Angular motion: ω(t)=dθdt,α(t)=dωdt=d2θdt2\omega(t) = \frac{d\theta}{dt}, \quad \alpha(t) = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}

Electromagnetism

  • Current: i(t)=dqdti(t) = \frac{dq}{dt}
  • Induced EMF: ε=dΦdt\varepsilon = -\frac{d\Phi}{dt}
  • Inductor voltage: VL=LdidtV_L = L\frac{di}{dt}
  • Capacitor current: iC=CdVdti_C = C\frac{dV}{dt}

Thermodynamics

  • Heat capacity: C=dUdTC = \frac{dU}{dT}
  • Entropy change: dS=dQTdS = \frac{dQ}{T}
  • Temperature gradient: T=dTdx\nabla T = \frac{dT}{dx}

Fluid mechanics

  • Density: ρ=dmdV\rho = \frac{dm}{dV}
  • Pressure: P=dFdAP = \frac{dF}{dA}
  • Flow rate: Q=dVdtQ = \frac{dV}{dt}

Optics

  • Refractive index gradient: n=dndx\nabla n = \frac{dn}{dx}
  • Light intensity: I=dEdtI = \frac{dE}{dt}

Economics

  • Marginal cost: MC=dCdQMC = \frac{dC}{dQ}
  • Marginal revenue: MR=dRdQMR = \frac{dR}{dQ}
  • Price elasticity: E=dQdPPQE = \frac{dQ}{dP} \cdot \frac{P}{Q}

Biology

  • Growth rate: r=dNdtr = \frac{dN}{dt}
  • Metabolic rate: M=dEdtM = \frac{dE}{dt}

练习题

练习 1

For s(t)=2t2+3t+1s(t) = 2t^2 + 3t + 1, find (1) v(t)v(t) (2) a(t)a(t) (3) v(2)v(2) and a(2)a(2).

参考答案
  1. v(t)=dsdt=4t+3v(t) = \dfrac{ds}{dt} = 4t + 3
  2. a(t)=dvdt=4a(t) = \dfrac{dv}{dt} = 4
  3. v(2)=11, a(2)=4v(2) = 11,\ a(2) = 4.

练习 2

For a capacitor with V(t)=10sin(2t)V(t) = 10\sin(2t) and C=2 FC = 2\ \text{F}, find i(t)i(t).

参考答案

dVdt=20cos(2t)\dfrac{dV}{dt} = 20\cos(2t), so i(t)=CdVdt=40cos(2t)i(t) = C\dfrac{dV}{dt} = 40\cos(2t).

练习 3

If m(V)=2V2+3Vm(V) = 2V^2 + 3V, find the density ρ(V)\rho(V).

参考答案

ρ(V)=dmdV=4V+3\rho(V) = \dfrac{dm}{dV} = 4V + 3.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
Δ\Delta希腊字母Delta(德尔塔)有限增量或变化量
θ\theta希腊字母Theta(西塔)角位移
ω\omega希腊字母Omega(欧米伽)角速度
α\alpha希腊字母Alpha(阿尔法)角加速度
Φ\Phi希腊字母Phi(法伊)磁通量
ε\varepsilon希腊字母Epsilon(艾普西龙)感应电动势

中英对照

中文术语英文术语音标说明
瞬时变化率instantaneous rate of change/ɪnstənˈteɪniəs reɪt əv tʃeɪndʒ/物理量相对于另一个变量的瞬时变化速度
速度velocity/vəˈlɒsəti/位移对时间的导数
加速度acceleration/əkˌsɛləˈreɪʃən/速度对时间的导数
加加速度jerk/dʒɜːk/加速度对时间的导数
功率power/ˈpaʊə/功随时间的变化率
动量momentum/məˈmɛntəm/质量与速度的乘积
角速度angular velocity/ˈæŋɡjələ vəˈlɒsəti/角位移对时间的导数
角加速度angular acceleration/ˈæŋɡjələ əkˌsɛləˈreɪʃən/角速度对时间的导数
电流current/ˈkʌrənt/电荷对时间的导数
电动势electromotive force/ɪˌlɛktrəʊˈməʊtɪv fɔːs/磁通量变化率的负值
热容heat capacity/hiːt kəˈpæsəti/内能随温度的变化率
密度density/ˈdɛnsəti/质量随体积的变化率
边际成本marginal cost/ˈmɑːdʒɪnəl kɒst/总成本随产量的变化率
边际收益marginal revenue/ˈmɑːdʒɪnəl ˈrɛvənjuː/总收益随产量的变化率
弹性elasticity/ɪˌlæˈstɪsəti/需求对价格变化的敏感度

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  3. 3

    Continuity in Advanced Calculus

    先修课程

    A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.

    前往课程
  4. 4

    Differential Calculus of One Variable

    当前课程

    A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.

    前往课程

搜索