导数运算法则
导数的运算法则是计算复杂函数导数的重要工具。掌握这些法则,能够将复杂函数的求导问题分解为简单函数的求导问题。
和差法则
乘积法则
商法则
链式法则
练习题
练习 1
求函数 f ( x ) = x 3 + 2 x 2 − 5 x + 1 f(x) = x^3 + 2x^2 - 5x + 1 f ( x ) = x 3 + 2 x 2 − 5 x + 1 的导数。
参考答案
解题思路 :
使用和差法则和幂函数导数公式。
详细步骤 :
应用和差法则:
f ′ ( x ) = ( x 3 ) ′ + ( 2 x 2 ) ′ − ( 5 x ) ′ + ( 1 ) ′ f'(x) = (x^3)' + (2x^2)' - (5x)' + (1)' f ′ ( x ) = ( x 3 ) ′ + ( 2 x 2 ) ′ − ( 5 x ) ′ + ( 1 ) ′
计算各项导数:
( x 3 ) ′ = 3 x 2 (x^3)' = 3x^2 ( x 3 ) ′ = 3 x 2
( 2 x 2 ) ′ = 2 ⋅ 2 x = 4 x (2x^2)' = 2 \cdot 2x = 4x ( 2 x 2 ) ′ = 2 ⋅ 2 x = 4 x
( 5 x ) ′ = 5 (5x)' = 5 ( 5 x ) ′ = 5
( 1 ) ′ = 0 (1)' = 0 ( 1 ) ′ = 0
合并结果:
f ′ ( x ) = 3 x 2 + 4 x − 5 f'(x) = 3x^2 + 4x - 5 f ′ ( x ) = 3 x 2 + 4 x − 5
答案 :f ′ ( x ) = 3 x 2 + 4 x − 5 f'(x) = 3x^2 + 4x - 5 f ′ ( x ) = 3 x 2 + 4 x − 5
练习 2
求函数 f ( x ) = x 2 sin x f(x) = x^2 \sin x f ( x ) = x 2 sin x 的导数。
参考答案
解题思路 :
使用乘积法则。
详细步骤 :
设 u = x 2 u = x^2 u = x 2 ,v = sin x v = \sin x v = sin x
计算 u ′ u' u ′ 和 v ′ v' v ′ :
u ′ = 2 x u' = 2x u ′ = 2 x
v ′ = cos x v' = \cos x v ′ = cos x
应用乘积法则:
f ′ ( x ) = u ′ v + u v ′ = 2 x ⋅ sin x + x 2 ⋅ cos x f'(x) = u'v + uv' = 2x \cdot \sin x + x^2 \cdot \cos x f ′ ( x ) = u ′ v + u v ′ = 2 x ⋅ sin x + x 2 ⋅ cos x
整理结果:
f ′ ( x ) = 2 x sin x + x 2 cos x f'(x) = 2x\sin x + x^2\cos x f ′ ( x ) = 2 x sin x + x 2 cos x
答案 :f ′ ( x ) = 2 x sin x + x 2 cos x f'(x) = 2x\sin x + x^2\cos x f ′ ( x ) = 2 x sin x + x 2 cos x
练习 3
求函数 f ( x ) = x 2 + 1 x − 1 f(x) = \frac{x^2 + 1}{x - 1} f ( x ) = x − 1 x 2 + 1 的导数。
参考答案
解题思路 :
使用商法则。
详细步骤 :
设 u = x 2 + 1 u = x^2 + 1 u = x 2 + 1 ,v = x − 1 v = x - 1 v = x − 1
计算 u ′ u' u ′ 和 v ′ v' v ′ :
u ′ = 2 x u' = 2x u ′ = 2 x
v ′ = 1 v' = 1 v ′ = 1
应用商法则:
f ′ ( x ) = u ′ v − u v ′ v 2 = 2 x ( x − 1 ) − ( x 2 + 1 ) ( 1 ) ( x − 1 ) 2 f'(x) = \frac{u'v - uv'}{v^2} = \frac{2x(x-1) - (x^2+1)(1)}{(x-1)^2} f ′ ( x ) = v 2 u ′ v − u v ′ = ( x − 1 ) 2 2 x ( x − 1 ) − ( x 2 + 1 ) ( 1 )
展开计算:
= 2 x 2 − 2 x − x 2 − 1 ( x − 1 ) 2 = x 2 − 2 x − 1 ( x − 1 ) 2 = \frac{2x^2 - 2x - x^2 - 1}{(x-1)^2} = \frac{x^2 - 2x - 1}{(x-1)^2} = ( x − 1 ) 2 2 x 2 − 2 x − x 2 − 1 = ( x − 1 ) 2 x 2 − 2 x − 1
答案 :f ′ ( x ) = x 2 − 2 x − 1 ( x − 1 ) 2 f'(x) = \frac{x^2 - 2x - 1}{(x-1)^2} f ′ ( x ) = ( x − 1 ) 2 x 2 − 2 x − 1
练习 4
求函数 f ( x ) = sin ( x 2 + 1 ) f(x) = \sin(x^2 + 1) f ( x ) = sin ( x 2 + 1 ) 的导数。
参考答案
解题思路 :
使用链式法则。
详细步骤 :
设 u = x 2 + 1 u = x^2 + 1 u = x 2 + 1 ,则 f ( x ) = sin u f(x) = \sin u f ( x ) = sin u
计算各层导数:
d f d u = cos u = cos ( x 2 + 1 ) \frac{df}{du} = \cos u = \cos(x^2 + 1) d u df = cos u = cos ( x 2 + 1 )
d u d x = 2 x \frac{du}{dx} = 2x d x d u = 2 x
应用链式法则:
f ′ ( x ) = d f d u ⋅ d u d x = cos ( x 2 + 1 ) ⋅ 2 x f'(x) = \frac{df}{du} \cdot \frac{du}{dx} = \cos(x^2 + 1) \cdot 2x f ′ ( x ) = d u df ⋅ d x d u = cos ( x 2 + 1 ) ⋅ 2 x
整理结果:
f ′ ( x ) = 2 x cos ( x 2 + 1 ) f'(x) = 2x\cos(x^2 + 1) f ′ ( x ) = 2 x cos ( x 2 + 1 )
答案 :f ′ ( x ) = 2 x cos ( x 2 + 1 ) f'(x) = 2x\cos(x^2 + 1) f ′ ( x ) = 2 x cos ( x 2 + 1 )
练习 5
改编自2022考研数学一第1题
设 lim x → 1 f ( x ) ln x = 1 \lim\limits_{x\to1} \frac{f(x)}{\ln x}=1 x → 1 lim l n x f ( x ) = 1 ,求 f ′ ( 1 ) f'(1) f ′ ( 1 ) 的值。
参考答案
解题思路 :
利用等价无穷小的性质和链式法则。
详细步骤 :
由 lim x → 1 f ( x ) ln x = 1 \lim\limits_{x\to1} \frac{f(x)}{\ln x}=1 x → 1 lim l n x f ( x ) = 1 ,可得 f ( x ) ∼ ln x f(x)\sim \ln x f ( x ) ∼ ln x 当 x → 1 x\to1 x → 1
当 x → 1 x\to1 x → 1 时,ln x → 0 \ln x\to0 ln x → 0 ,所以 lim x → 1 f ( x ) = 0 \lim\limits_{x\to1} f(x)=0 x → 1 lim f ( x ) = 0
设 g ( x ) = f ( x ) ln x g(x)=\frac{f(x)}{\ln x} g ( x ) = l n x f ( x ) ,则 f ( x ) = g ( x ) ln x f(x)=g(x)\ln x f ( x ) = g ( x ) ln x
应用乘积法则:
f ′ ( x ) = g ′ ( x ) ln x + g ( x ) ⋅ 1 x f'(x)=g'(x)\ln x + g(x)\cdot\frac{1}{x} f ′ ( x ) = g ′ ( x ) ln x + g ( x ) ⋅ x 1
当 x → 1 x\to1 x → 1 时,ln x → 0 \ln x\to0 ln x → 0 ,1 x → 1 \frac{1}{x}\to1 x 1 → 1 ,g ( x ) → 1 g(x)\to1 g ( x ) → 1
因此 f ′ ( 1 ) = lim x → 1 f ′ ( x ) = 1 f'(1)=\lim\limits_{x\to1} f'(x)=1 f ′ ( 1 ) = x → 1 lim f ′ ( x ) = 1
答案 :f ′ ( 1 ) = 1 f'(1)=1 f ′ ( 1 ) = 1
练习 6
改编自2023考研数学一第3题
设函数 y = f ( x ) y=f(x) y = f ( x ) 由参数方程 { x = 2 t + ∣ t ∣ y = ∣ t ∣ sin t \begin{cases}x=2t+|t|\\y=|t|\sin t\end{cases} { x = 2 t + ∣ t ∣ y = ∣ t ∣ sin t 确定,求 f ′ ( 0 ) f'(0) f ′ ( 0 ) 。
参考答案
解题思路 :
使用参数方程求导公式和链式法则。
详细步骤 :
当 t ≥ 0 t\geq0 t ≥ 0 时,x = 3 t , y = t sin t x=3t, y=t\sin t x = 3 t , y = t sin t ,所以 y = x 3 sin x 3 y=\frac{x}{3}\sin\frac{x}{3} y = 3 x sin 3 x
当 t < 0 t<0 t < 0 时,x = t , y = − t sin t x=t, y=-t\sin t x = t , y = − t sin t ,所以 y = − x sin x y=-x\sin x y = − x sin x
因此 f ( x ) = { x 3 sin x 3 , x ≥ 0 − x sin x , x < 0 f(x)=\begin{cases}\frac{x}{3}\sin\frac{x}{3}, & x\geq0\\-x\sin x, & x<0\end{cases} f ( x ) = { 3 x sin 3 x , − x sin x , x ≥ 0 x < 0
计算左导数:
f − ′ ( 0 ) = lim x → 0 − − x sin x − 0 x = − lim x → 0 − sin x = 0 f'_-(0)=\lim\limits_{x\to0^-}\frac{-x\sin x-0}{x}=-\lim\limits_{x\to0^-}\sin x=0 f − ′ ( 0 ) = x → 0 − lim x − x s i n x − 0 = − x → 0 − lim sin x = 0
计算右导数:
f + ′ ( 0 ) = lim x → 0 + x 3 sin x 3 − 0 x = lim x → 0 + sin x 3 3 = 0 f'_+(0)=\lim\limits_{x\to0^+}\frac{\frac{x}{3}\sin\frac{x}{3}-0}{x}=\lim\limits_{x\to0^+}\frac{\sin\frac{x}{3}}{3}=0 f + ′ ( 0 ) = x → 0 + lim x 3 x s i n 3 x − 0 = x → 0 + lim 3 s i n 3 x = 0
由于左导数和右导数相等,所以 f ′ ( 0 ) = 0 f'(0)=0 f ′ ( 0 ) = 0
答案 :f ′ ( 0 ) = 0 f'(0)=0 f ′ ( 0 ) = 0
练习 7
改编自2022考研数学一第2题
设 f ( u ) f(u) f ( u ) 可导,z = x y f ( y x ) z=xyf\left(\frac{y}{x}\right) z = x y f ( x y ) ,求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂ x ∂ z 和 ∂ z ∂ y \frac{\partial z}{\partial y} ∂ y ∂ z 。
参考答案
解题思路 :
使用偏导数的链式法则和乘积法则。
详细步骤 :
设 u = y x u=\frac{y}{x} u = x y ,则 z = x y f ( u ) z=xyf(u) z = x y f ( u )
对 x x x 求偏导:
∂ z ∂ x = y f ( u ) + x y f ′ ( u ) ⋅ ∂ u ∂ x \frac{\partial z}{\partial x}=yf(u)+xyf'(u)\cdot\frac{\partial u}{\partial x} ∂ x ∂ z = y f ( u ) + x y f ′ ( u ) ⋅ ∂ x ∂ u
= y f ( u ) + x y f ′ ( u ) ⋅ ( − y x 2 ) =yf(u)+xyf'(u)\cdot\left(-\frac{y}{x^2}\right) = y f ( u ) + x y f ′ ( u ) ⋅ ( − x 2 y )
= y f ( y x ) − y 2 f ′ ( y x ) 1 x =yf\left(\frac{y}{x}\right)-y^2f'\left(\frac{y}{x}\right)\frac{1}{x} = y f ( x y ) − y 2 f ′ ( x y ) x 1
对 y y y 求偏导:
∂ z ∂ y = x f ( u ) + x y f ′ ( u ) ⋅ ∂ u ∂ y \frac{\partial z}{\partial y}=xf(u)+xyf'(u)\cdot\frac{\partial u}{\partial y} ∂ y ∂ z = x f ( u ) + x y f ′ ( u ) ⋅ ∂ y ∂ u
= x f ( u ) + x y f ′ ( u ) ⋅ 1 x =xf(u)+xyf'(u)\cdot\frac{1}{x} = x f ( u ) + x y f ′ ( u ) ⋅ x 1
= x f ( y x ) + y f ′ ( y x ) =xf\left(\frac{y}{x}\right)+yf'\left(\frac{y}{x}\right) = x f ( x y ) + y f ′ ( x y )
答案 :
∂ z ∂ x = y f ( y x ) − y 2 f ′ ( y x ) 1 x \frac{\partial z}{\partial x}=yf\left(\frac{y}{x}\right)-y^2f'\left(\frac{y}{x}\right)\frac{1}{x} ∂ x ∂ z = y f ( x y ) − y 2 f ′ ( x y ) x 1
∂ z ∂ y = x f ( y x ) + y f ′ ( y x ) \frac{\partial z}{\partial y}=xf\left(\frac{y}{x}\right)+yf'\left(\frac{y}{x}\right) ∂ y ∂ z = x f ( x y ) + y f ′ ( x y )
练习 8
改编自2023考研数学一第17题
设曲线 y = y ( x ) ( x > 0 ) y=y(x)(x>0) y = y ( x ) ( x > 0 ) 经过点 ( 1 , 2 ) (1,2) ( 1 , 2 ) ,该曲线上任一点 P ( x , y ) P(x,y) P ( x , y ) 到 y y y 轴的距离等于该点处的切线在 y y y 轴上的截距。求 y ( x ) y(x) y ( x ) 。
参考答案
解题思路 :
利用切线方程和截距的概念建立微分方程。
详细步骤 :
点 P ( x , y ) P(x,y) P ( x , y ) 到 y y y 轴的距离为 x x x
点 P ( x , y ) P(x,y) P ( x , y ) 处的切线方程为:
Y − y = y ′ ( x ) ( X − x ) Y-y=y'(x)(X-x) Y − y = y ′ ( x ) ( X − x )
切线在 y y y 轴上的截距为:
当 X = 0 X=0 X = 0 时,Y = y − x y ′ ( x ) Y=y-xy'(x) Y = y − x y ′ ( x )
根据题意:x = y − x y ′ ( x ) x=y-xy'(x) x = y − x y ′ ( x )
整理得:y ′ ( x ) = y − x x y'(x)=\frac{y-x}{x} y ′ ( x ) = x y − x
这是一个一阶线性微分方程:
y ′ ( x ) − 1 x y = − 1 y'(x)-\frac{1}{x}y=-1 y ′ ( x ) − x 1 y = − 1
求解得:y ( x ) = x ( 2 − ln x ) y(x)=x(2-\ln x) y ( x ) = x ( 2 − ln x )
验证 y ( 1 ) = 2 y(1)=2 y ( 1 ) = 2 ,符合条件
答案 :y ( x ) = x ( 2 − ln x ) y(x)=x(2-\ln x) y ( x ) = x ( 2 − ln x )
练习 9
改编自2024考研数学一第1题
已知函数 f ( x ) = ∫ 0 x e cos t d t f(x)=\int_0^x e^{\cos t}dt f ( x ) = ∫ 0 x e c o s t d t ,求 f ′ ( x ) f'(x) f ′ ( x ) 和 f ′ ′ ( x ) f''(x) f ′′ ( x ) 。
参考答案
解题思路 :
使用积分上限函数求导公式和链式法则。
详细步骤 :
根据积分上限函数求导公式:
f ′ ( x ) = e cos x f'(x)=e^{\cos x} f ′ ( x ) = e c o s x
对 f ′ ( x ) f'(x) f ′ ( x ) 再次求导:
f ′ ′ ( x ) = d d x ( e cos x ) = e cos x ⋅ ( − sin x ) = − e cos x sin x f''(x)=\frac{d}{dx}(e^{\cos x})=e^{\cos x}\cdot(-\sin x)=-e^{\cos x}\sin x f ′′ ( x ) = d x d ( e c o s x ) = e c o s x ⋅ ( − sin x ) = − e c o s x sin x
使用链式法则:
设 u = cos x u=\cos x u = cos x ,则 f ′ ( x ) = e u f'(x)=e^u f ′ ( x ) = e u
d d x ( e u ) = e u ⋅ d u d x = e cos x ⋅ ( − sin x ) \frac{d}{dx}(e^u)=e^u\cdot\frac{du}{dx}=e^{\cos x}\cdot(-\sin x) d x d ( e u ) = e u ⋅ d x d u = e c o s x ⋅ ( − sin x )
答案 :
f ′ ( x ) = e cos x f'(x)=e^{\cos x} f ′ ( x ) = e c o s x
f ′ ′ ( x ) = − e cos x sin x f''(x)=-e^{\cos x}\sin x f ′′ ( x ) = − e c o s x sin x
练习 10
改编自2025考研数学一第1题
已知函数 f ( x ) = ∫ 0 x e t 2 sin t d t f(x) = \int_0^x e^{t^2} \sin t\,dt f ( x ) = ∫ 0 x e t 2 sin t d t ,求 f ′ ( x ) f'(x) f ′ ( x ) 和 f ′ ′ ( x ) f''(x) f ′′ ( x ) 。
参考答案
解题思路 :
使用积分上限函数求导公式和乘积法则。
详细步骤 :
根据积分上限函数求导公式:
f ′ ( x ) = e x 2 sin x f'(x) = e^{x^2} \sin x f ′ ( x ) = e x 2 sin x
对 f ′ ( x ) f'(x) f ′ ( x ) 再次求导,使用乘积法则:
设 u = e x 2 u = e^{x^2} u = e x 2 ,v = sin x v = \sin x v = sin x
u ′ = e x 2 ⋅ 2 x = 2 x e x 2 u' = e^{x^2} \cdot 2x = 2x e^{x^2} u ′ = e x 2 ⋅ 2 x = 2 x e x 2
v ′ = cos x v' = \cos x v ′ = cos x
应用乘积法则:
f ′ ′ ( x ) = u ′ v + u v ′ = 2 x e x 2 ⋅ sin x + e x 2 ⋅ cos x f''(x) = u'v + uv' = 2x e^{x^2} \cdot \sin x + e^{x^2} \cdot \cos x f ′′ ( x ) = u ′ v + u v ′ = 2 x e x 2 ⋅ sin x + e x 2 ⋅ cos x
= 2 x e x 2 sin x + e x 2 cos x = 2x e^{x^2} \sin x + e^{x^2} \cos x = 2 x e x 2 sin x + e x 2 cos x
答案 :
f ′ ( x ) = e x 2 sin x f'(x) = e^{x^2} \sin x f ′ ( x ) = e x 2 sin x
f ′ ′ ( x ) = 2 x e x 2 sin x + e x 2 cos x f''(x) = 2x e^{x^2} \sin x + e^{x^2} \cos x f ′′ ( x ) = 2 x e x 2 sin x + e x 2 cos x
总结
中英对照
中文术语 英文术语 音标 说明 乘积法则 product rule /ˈprɒdʌkt ruːl/ 乘积函数的导数法则 商法则 quotient rule /ˈkwəʊʃənt ruːl/ 商函数的导数法则 和差法则 sum and difference rule /sʌm ənd ˈdɪfərəns ruːl/ 和差函数的导数法则 高阶导数 higher-order derivative /ˈhaɪə ˈɔːdə dɪˈrɪvətɪv/ 函数的二阶及以上的导数 莱布尼茨公式 Leibniz formula /ˈlaɪbnɪts ˈfɔːmjələ/ 求两个函数乘积的高阶导数的公式
1 Exploring Functions in Advanced Mathematics
先修课程
Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程
2 The World of Limits in Advanced Mathematics
先修课程
Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程
3 Continuity in Advanced Calculus
先修课程
A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.
前往课程
4 Differential Calculus of One Variable
当前课程
A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.
前往课程