高阶导数
高阶导数是微积分中的重要概念,它帮助我们研究函数的更高阶变化率。
高阶导数的定义
定义 :函数 f ( x ) f(x) f ( x ) 的 n n n 阶导数记作 f ( n ) ( x ) f^{(n)}(x) f ( n ) ( x ) 或 d n f d x n \frac{d^n f}{dx^n} d x n d n f ,定义为
f ( n ) ( x ) = d d x ( f ( n − 1 ) ( x ) ) f^{(n)}(x) = \frac{d}{dx}(f^{(n-1)}(x)) f ( n ) ( x ) = d x d ( f ( n − 1 ) ( x ))
高阶导数的物理意义
一阶导数 :瞬时速度
二阶导数 :瞬时加速度
三阶导数 :加加速度(急动度)
常见函数的高阶导数
1. 幂函数
( x n ) ′ = n x n − 1 (x^n)' = nx^{n-1} ( x n ) ′ = n x n − 1
( x n ) ′ ′ = n ( n − 1 ) x n − 2 (x^n)'' = n(n-1)x^{n-2} ( x n ) ′′ = n ( n − 1 ) x n − 2
( x n ) ′ ′ ′ = n ( n − 1 ) ( n − 2 ) x n − 3 (x^n)''' = n(n-1)(n-2)x^{n-3} ( x n ) ′′′ = n ( n − 1 ) ( n − 2 ) x n − 3
( x n ) ( k ) = n ! ( n − k ) ! x n − k (x^n)^{(k)} = \frac{n!}{(n-k)!}x^{n-k} ( x n ) ( k ) = ( n − k )! n ! x n − k (k ≤ n k \leq n k ≤ n )
2. 指数函数
( e x ) ′ = e x (e^x)' = e^x ( e x ) ′ = e x
( e x ) ′ ′ = e x (e^x)'' = e^x ( e x ) ′′ = e x
( e x ) ′ ′ ′ = e x (e^x)''' = e^x ( e x ) ′′′ = e x
( e x ) ( n ) = e x (e^x)^{(n)} = e^x ( e x ) ( n ) = e x
3. 三角函数
正弦函数 :
( sin x ) ′ = cos x (\sin x)' = \cos x ( sin x ) ′ = cos x
( sin x ) ′ ′ = − sin x (\sin x)'' = -\sin x ( sin x ) ′′ = − sin x
( sin x ) ′ ′ ′ = − cos x (\sin x)''' = -\cos x ( sin x ) ′′′ = − cos x
( sin x ) ( 4 ) = sin x (\sin x)^{(4)} = \sin x ( sin x ) ( 4 ) = sin x
余弦函数 :
( cos x ) ′ = − sin x (\cos x)' = -\sin x ( cos x ) ′ = − sin x
( cos x ) ′ ′ = − cos x (\cos x)'' = -\cos x ( cos x ) ′′ = − cos x
( cos x ) ′ ′ ′ = sin x (\cos x)''' = \sin x ( cos x ) ′′′ = sin x
( cos x ) ( 4 ) = cos x (\cos x)^{(4)} = \cos x ( cos x ) ( 4 ) = cos x
4. 对数函数
( ln x ) ′ = 1 x (\ln x)' = \frac{1}{x} ( ln x ) ′ = x 1
( ln x ) ′ ′ = − 1 x 2 (\ln x)'' = -\frac{1}{x^2} ( ln x ) ′′ = − x 2 1
( ln x ) ′ ′ ′ = 2 x 3 (\ln x)''' = \frac{2}{x^3} ( ln x ) ′′′ = x 3 2
( ln x ) ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! x n (\ln x)^{(n)} = (-1)^{n-1}\frac{(n-1)!}{x^n} ( ln x ) ( n ) = ( − 1 ) n − 1 x n ( n − 1 )!
高阶导数的运算法则
1. 线性性
( a f + b g ) ( n ) = a f ( n ) + b g ( n ) (af + bg)^{(n)} = af^{(n)} + bg^{(n)} ( a f + b g ) ( n ) = a f ( n ) + b g ( n )
2. 莱布尼茨公式
公式 :( u v ) ( n ) = ∑ k = 0 n C n k u ( k ) v ( n − k ) (uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)} ( uv ) ( n ) = ∑ k = 0 n C n k u ( k ) v ( n − k )
其中 C n k = n ! k ! ( n − k ) ! C_n^k = \frac{n!}{k!(n-k)!} C n k = k ! ( n − k )! n ! 是组合数。
3. 复合函数的高阶导数
对于复合函数 f ( g ( x ) ) f(g(x)) f ( g ( x )) ,高阶导数的计算比较复杂,通常需要使用链式法则的推广形式。
莱布尼茨公式的应用
例子 1:求 ( x 2 sin x ) ′ ′ (x^2 \sin x)'' ( x 2 sin x ) ′′
解 :
使用莱布尼茨公式:n = 2 n = 2 n = 2
( x 2 ) ′ = 2 x (x^2)' = 2x ( x 2 ) ′ = 2 x ,( x 2 ) ′ ′ = 2 (x^2)'' = 2 ( x 2 ) ′′ = 2
( sin x ) ′ = cos x (\sin x)' = \cos x ( sin x ) ′ = cos x ,( sin x ) ′ ′ = − sin x (\sin x)'' = -\sin x ( sin x ) ′′ = − sin x
( x 2 sin x ) ′ ′ = C 2 0 ⋅ 2 ⋅ sin x + C 2 1 ⋅ 2 x ⋅ cos x + C 2 2 ⋅ x 2 ⋅ ( − sin x ) (x^2 \sin x)'' = C_2^0 \cdot 2 \cdot \sin x + C_2^1 \cdot 2x \cdot \cos x + C_2^2 \cdot x^2 \cdot (-\sin x) ( x 2 sin x ) ′′ = C 2 0 ⋅ 2 ⋅ sin x + C 2 1 ⋅ 2 x ⋅ cos x + C 2 2 ⋅ x 2 ⋅ ( − sin x )
= 2 sin x + 4 x cos x − x 2 sin x = 2\sin x + 4x\cos x - x^2\sin x = 2 sin x + 4 x cos x − x 2 sin x
例子 2:求 ( e x ln x ) ′ ′ (e^x \ln x)'' ( e x ln x ) ′′
解 :
使用莱布尼茨公式:n = 2 n = 2 n = 2
( e x ) ′ = e x (e^x)' = e^x ( e x ) ′ = e x ,( e x ) ′ ′ = e x (e^x)'' = e^x ( e x ) ′′ = e x
( ln x ) ′ = 1 x (\ln x)' = \frac{1}{x} ( ln x ) ′ = x 1 ,( ln x ) ′ ′ = − 1 x 2 (\ln x)'' = -\frac{1}{x^2} ( ln x ) ′′ = − x 2 1
( e x ln x ) ′ ′ = C 2 0 ⋅ e x ⋅ ln x + C 2 1 ⋅ e x ⋅ 1 x + C 2 2 ⋅ e x ⋅ ( − 1 x 2 ) (e^x \ln x)'' = C_2^0 \cdot e^x \cdot \ln x + C_2^1 \cdot e^x \cdot \frac{1}{x} + C_2^2 \cdot e^x \cdot (-\frac{1}{x^2}) ( e x ln x ) ′′ = C 2 0 ⋅ e x ⋅ ln x + C 2 1 ⋅ e x ⋅ x 1 + C 2 2 ⋅ e x ⋅ ( − x 2 1 )
= e x ( ln x + 2 x − 1 x 2 ) = e^x(\ln x + \frac{2}{x} - \frac{1}{x^2}) = e x ( ln x + x 2 − x 2 1 )
高阶导数的几何意义
1. 二阶导数的几何意义
f ′ ′ ( x ) > 0 f''(x) > 0 f ′′ ( x ) > 0 :函数在该点附近是凸的
f ′ ′ ( x ) < 0 f''(x) < 0 f ′′ ( x ) < 0 :函数在该点附近是凹的
f ′ ′ ( x ) = 0 f''(x) = 0 f ′′ ( x ) = 0 :可能是拐点
2. 拐点的判定
如果 f ′ ′ ( c ) = 0 f''(c) = 0 f ′′ ( c ) = 0 且 f ′ ′ ′ ( c ) ≠ 0 f'''(c) \neq 0 f ′′′ ( c ) = 0 ,则 x = c x = c x = c 是函数 f ( x ) f(x) f ( x ) 的拐点。
常见错误和注意事项
1. 莱布尼茨公式错误
错误 :( u v ) ′ ′ = u ′ ′ v ′ ′ (uv)'' = u''v'' ( uv ) ′′ = u ′′ v ′′
正确 :( u v ) ′ ′ = u ′ ′ v + 2 u ′ v ′ + u v ′ ′ (uv)'' = u''v + 2u'v' + uv'' ( uv ) ′′ = u ′′ v + 2 u ′ v ′ + u v ′′
2. 符号错误
错误 :( cos x ) ′ ′ = cos x (\cos x)'' = \cos x ( cos x ) ′′ = cos x
正确 :( cos x ) ′ ′ = − cos x (\cos x)'' = -\cos x ( cos x ) ′′ = − cos x
3. 阶数错误
错误 :( x 3 ) ′ ′ = 3 x 2 (x^3)'' = 3x^2 ( x 3 ) ′′ = 3 x 2
正确 :( x 3 ) ′ ′ = 6 x (x^3)'' = 6x ( x 3 ) ′′ = 6 x
4. 复合函数错误
对于复合函数的高阶导数,不能简单地应用莱布尼茨公式。
练习题
练习 1
求函数 f ( x ) = x 3 sin x f(x) = x^3 \sin x f ( x ) = x 3 sin x 的三阶导数。
参考答案
解题思路 :
使用莱布尼茨公式求高阶导数。
详细步骤 :
使用莱布尼茨公式:( u v ) ( 3 ) = ∑ k = 0 3 C 3 k u ( k ) v ( 3 − k ) (uv)^{(3)} = \sum_{k=0}^{3} C_3^k u^{(k)} v^{(3-k)} ( uv ) ( 3 ) = ∑ k = 0 3 C 3 k u ( k ) v ( 3 − k )
( x 3 ) ′ = 3 x 2 (x^3)' = 3x^2 ( x 3 ) ′ = 3 x 2 ,( x 3 ) ′ ′ = 6 x (x^3)'' = 6x ( x 3 ) ′′ = 6 x ,( x 3 ) ′ ′ ′ = 6 (x^3)''' = 6 ( x 3 ) ′′′ = 6
( sin x ) ′ = cos x (\sin x)' = \cos x ( sin x ) ′ = cos x ,( sin x ) ′ ′ = − sin x (\sin x)'' = -\sin x ( sin x ) ′′ = − sin x ,( sin x ) ′ ′ ′ = − cos x (\sin x)''' = -\cos x ( sin x ) ′′′ = − cos x
f ′ ′ ′ ( x ) = C 3 0 ⋅ 6 ⋅ sin x + C 3 1 ⋅ 6 x ⋅ ( − sin x ) + C 3 2 ⋅ 3 x 2 ⋅ ( − cos x ) + C 3 3 ⋅ x 3 ⋅ ( − cos x ) f'''(x) = C_3^0 \cdot 6 \cdot \sin x + C_3^1 \cdot 6x \cdot (-\sin x) + C_3^2 \cdot 3x^2 \cdot (-\cos x) + C_3^3 \cdot x^3 \cdot (-\cos x) f ′′′ ( x ) = C 3 0 ⋅ 6 ⋅ sin x + C 3 1 ⋅ 6 x ⋅ ( − sin x ) + C 3 2 ⋅ 3 x 2 ⋅ ( − cos x ) + C 3 3 ⋅ x 3 ⋅ ( − cos x )
f ′ ′ ′ ( x ) = 6 sin x − 18 x sin x − 9 x 2 cos x − x 3 cos x f'''(x) = 6\sin x - 18x\sin x - 9x^2\cos x - x^3\cos x f ′′′ ( x ) = 6 sin x − 18 x sin x − 9 x 2 cos x − x 3 cos x
答案 :f ′ ′ ′ ( x ) = 6 sin x − 18 x sin x − 9 x 2 cos x − x 3 cos x f'''(x) = 6\sin x - 18x\sin x - 9x^2\cos x - x^3\cos x f ′′′ ( x ) = 6 sin x − 18 x sin x − 9 x 2 cos x − x 3 cos x
练习 2
求函数 f ( x ) = e x ln x f(x) = e^x \ln x f ( x ) = e x ln x 的二阶导数。
参考答案
解题思路 :
使用莱布尼茨公式求二阶导数。
详细步骤 :
使用莱布尼茨公式:( u v ) ′ ′ = u ′ ′ v + 2 u ′ v ′ + u v ′ ′ (uv)'' = u''v + 2u'v' + uv'' ( uv ) ′′ = u ′′ v + 2 u ′ v ′ + u v ′′
( e x ) ′ = e x (e^x)' = e^x ( e x ) ′ = e x ,( e x ) ′ ′ = e x (e^x)'' = e^x ( e x ) ′′ = e x
( ln x ) ′ = 1 x (\ln x)' = \frac{1}{x} ( ln x ) ′ = x 1 ,( ln x ) ′ ′ = − 1 x 2 (\ln x)'' = -\frac{1}{x^2} ( ln x ) ′′ = − x 2 1
f ′ ′ ( x ) = e x ⋅ ln x + 2 e x ⋅ 1 x + e x ⋅ ( − 1 x 2 ) f''(x) = e^x \cdot \ln x + 2e^x \cdot \frac{1}{x} + e^x \cdot (-\frac{1}{x^2}) f ′′ ( x ) = e x ⋅ ln x + 2 e x ⋅ x 1 + e x ⋅ ( − x 2 1 )
f ′ ′ ( x ) = e x ( ln x + 2 x − 1 x 2 ) f''(x) = e^x(\ln x + \frac{2}{x} - \frac{1}{x^2}) f ′′ ( x ) = e x ( ln x + x 2 − x 2 1 )
答案 :f ′ ′ ( x ) = e x ( ln x + 2 x − 1 x 2 ) f''(x) = e^x(\ln x + \frac{2}{x} - \frac{1}{x^2}) f ′′ ( x ) = e x ( ln x + x 2 − x 2 1 )
练习 3
求函数 f ( x ) = x 2 cos x f(x) = x^2 \cos x f ( x ) = x 2 cos x 的四阶导数。
参考答案
解题思路 :
使用莱布尼茨公式求四阶导数。
详细步骤 :
使用莱布尼茨公式:( u v ) ( 4 ) = ∑ k = 0 4 C 4 k u ( k ) v ( 4 − k ) (uv)^{(4)} = \sum_{k=0}^{4} C_4^k u^{(k)} v^{(4-k)} ( uv ) ( 4 ) = ∑ k = 0 4 C 4 k u ( k ) v ( 4 − k )
( x 2 ) ′ = 2 x (x^2)' = 2x ( x 2 ) ′ = 2 x ,( x 2 ) ′ ′ = 2 (x^2)'' = 2 ( x 2 ) ′′ = 2 ,( x 2 ) ′ ′ ′ = 0 (x^2)''' = 0 ( x 2 ) ′′′ = 0 ,( x 2 ) ( 4 ) = 0 (x^2)^{(4)} = 0 ( x 2 ) ( 4 ) = 0
( cos x ) ′ = − sin x (\cos x)' = -\sin x ( cos x ) ′ = − sin x ,( cos x ) ′ ′ = − cos x (\cos x)'' = -\cos x ( cos x ) ′′ = − cos x ,( cos x ) ′ ′ ′ = sin x (\cos x)''' = \sin x ( cos x ) ′′′ = sin x ,( cos x ) ( 4 ) = cos x (\cos x)^{(4)} = \cos x ( cos x ) ( 4 ) = cos x
f ( 4 ) ( x ) = C 4 0 ⋅ 0 ⋅ cos x + C 4 1 ⋅ 0 ⋅ sin x + C 4 2 ⋅ 2 ⋅ ( − cos x ) + C 4 3 ⋅ 2 x ⋅ ( − sin x ) + C 4 4 ⋅ x 2 ⋅ cos x f^{(4)}(x) = C_4^0 \cdot 0 \cdot \cos x + C_4^1 \cdot 0 \cdot \sin x + C_4^2 \cdot 2 \cdot (-\cos x) + C_4^3 \cdot 2x \cdot (-\sin x) + C_4^4 \cdot x^2 \cdot \cos x f ( 4 ) ( x ) = C 4 0 ⋅ 0 ⋅ cos x + C 4 1 ⋅ 0 ⋅ sin x + C 4 2 ⋅ 2 ⋅ ( − cos x ) + C 4 3 ⋅ 2 x ⋅ ( − sin x ) + C 4 4 ⋅ x 2 ⋅ cos x
f ( 4 ) ( x ) = 0 + 0 − 12 cos x − 8 x sin x + x 2 cos x f^{(4)}(x) = 0 + 0 - 12\cos x - 8x\sin x + x^2\cos x f ( 4 ) ( x ) = 0 + 0 − 12 cos x − 8 x sin x + x 2 cos x
答案 :f ( 4 ) ( x ) = ( x 2 − 12 ) cos x − 8 x sin x f^{(4)}(x) = (x^2 - 12)\cos x - 8x\sin x f ( 4 ) ( x ) = ( x 2 − 12 ) cos x − 8 x sin x
练习 4
求函数 f ( x ) = ln ( x 2 + 1 ) f(x) = \ln(x^2 + 1) f ( x ) = ln ( x 2 + 1 ) 的三阶导数。
参考答案
解题思路 :
使用复合函数求导法则。
详细步骤 :
f ′ ( x ) = 2 x x 2 + 1 f'(x) = \frac{2x}{x^2 + 1} f ′ ( x ) = x 2 + 1 2 x
f ′ ′ ( x ) = 2 ( x 2 + 1 ) − 2 x ⋅ 2 x ( x 2 + 1 ) 2 = 2 ( 1 − x 2 ) ( x 2 + 1 ) 2 f''(x) = \frac{2(x^2 + 1) - 2x \cdot 2x}{(x^2 + 1)^2} = \frac{2(1 - x^2)}{(x^2 + 1)^2} f ′′ ( x ) = ( x 2 + 1 ) 2 2 ( x 2 + 1 ) − 2 x ⋅ 2 x = ( x 2 + 1 ) 2 2 ( 1 − x 2 )
f ′ ′ ′ ( x ) = d d x ( 2 ( 1 − x 2 ) ( x 2 + 1 ) 2 ) = 2 ( − 2 x ) ( x 2 + 1 ) 2 − 2 ( 1 − x 2 ) ⋅ 2 ( x 2 + 1 ) ⋅ 2 x ( x 2 + 1 ) 4 f'''(x) = \frac{d}{dx}(\frac{2(1 - x^2)}{(x^2 + 1)^2}) = \frac{2(-2x)(x^2 + 1)^2 - 2(1 - x^2) \cdot 2(x^2 + 1) \cdot 2x}{(x^2 + 1)^4} f ′′′ ( x ) = d x d ( ( x 2 + 1 ) 2 2 ( 1 − x 2 ) ) = ( x 2 + 1 ) 4 2 ( − 2 x ) ( x 2 + 1 ) 2 − 2 ( 1 − x 2 ) ⋅ 2 ( x 2 + 1 ) ⋅ 2 x
f ′ ′ ′ ( x ) = 4 x ( 3 x 2 − 1 ) ( x 2 + 1 ) 3 f'''(x) = \frac{4x(3x^2 - 1)}{(x^2 + 1)^3} f ′′′ ( x ) = ( x 2 + 1 ) 3 4 x ( 3 x 2 − 1 )
答案 :f ′ ′ ′ ( x ) = 4 x ( 3 x 2 − 1 ) ( x 2 + 1 ) 3 f'''(x) = \frac{4x(3x^2 - 1)}{(x^2 + 1)^3} f ′′′ ( x ) = ( x 2 + 1 ) 3 4 x ( 3 x 2 − 1 )
练习 5
求函数 f ( x ) = sin ( x 2 ) f(x) = \sin(x^2) f ( x ) = sin ( x 2 ) 的二阶导数。
参考答案
解题思路 :
使用复合函数求导法则。
详细步骤 :
f ′ ( x ) = cos ( x 2 ) ⋅ 2 x = 2 x cos ( x 2 ) f'(x) = \cos(x^2) \cdot 2x = 2x\cos(x^2) f ′ ( x ) = cos ( x 2 ) ⋅ 2 x = 2 x cos ( x 2 )
f ′ ′ ( x ) = 2 cos ( x 2 ) + 2 x ⋅ ( − sin ( x 2 ) ⋅ 2 x ) = 2 cos ( x 2 ) − 4 x 2 sin ( x 2 ) f''(x) = 2\cos(x^2) + 2x \cdot (-\sin(x^2) \cdot 2x) = 2\cos(x^2) - 4x^2\sin(x^2) f ′′ ( x ) = 2 cos ( x 2 ) + 2 x ⋅ ( − sin ( x 2 ) ⋅ 2 x ) = 2 cos ( x 2 ) − 4 x 2 sin ( x 2 )
答案 :f ′ ′ ( x ) = 2 cos ( x 2 ) − 4 x 2 sin ( x 2 ) f''(x) = 2\cos(x^2) - 4x^2\sin(x^2) f ′′ ( x ) = 2 cos ( x 2 ) − 4 x 2 sin ( x 2 )
总结
本文出现的符号
符号 类型 读音/说明 在本文中的含义 ξ \xi ξ 希腊字母 Xi(克西) 中值定理中的某一点
中英对照
中文术语 英文术语 音标 说明 高阶导数 higher-order derivative /ˈhaɪə ˈɔːdə dɪˈrɪvətɪv/ 函数的二阶及以上的导数 莱布尼茨公式 Leibniz formula /ˈlaɪbnɪts ˈfɔːmjələ/ 求两个函数乘积的高阶导数的公式
1 Exploring Functions in Advanced Mathematics
先修课程
Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程
2 The World of Limits in Advanced Mathematics
先修课程
Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程
3 Continuity in Advanced Calculus
先修课程
A focused guide on continuity: core definitions, types of discontinuities, and continuity of elementary functions.
前往课程
4 Differential Calculus of One Variable
当前课程
A complete study path for derivatives, linear approximations, extrema, and classic theorems that power single-variable calculus.
前往课程