Fundamentals of Infinite Series
What is a Series?
: denotes a sequence whose -th term is . Curly braces emphasize it is a sequence.
(sigma): Greek letter, pronounced “sigma”, denotes summation. means summing from to infinity.
(infinity): indicates infinitely many terms.
Given a sequence , the expression
is an infinite series (or simply, a series). is called the general term.
Partial Sums
For the series , the sum of its first terms
is the -th partial sum.
Convergence vs. Divergence
If the partial sums converge, i.e., there exists a finite limit
then is convergent, and is its sum:
If diverges, then diverges.
Basic Properties
Linearity
If and both converge, then
where is a constant.
Necessary condition for convergence
If converges, then
Idea: use the definition of convergence and the relation .
Details:
- Assume converges with sum , i.e. where .
- Express : for , .
- Take the limit:
- Conclusion: .
Note: This is necessary but not sufficient; does not guarantee convergence.
练习题
练习 1
Determine whether converges.
思路:Use the ratio test.
步骤:
- Let
- Ratio:
- Limit:
- Conclude convergence.
答案:Convergent.
练习 2
Determine whether converges.
思路:Check absolute convergence.
步骤:
- Consider
- This is a -series with , so it converges absolutely.
- Therefore the original series converges.
答案:Convergent.
练习 3
Determine whether converges.
思路:Use the integral test.
步骤:
- Let , so
- Compute
- The integral diverges, so the series diverges.
答案:Divergent.
练习 4
Determine whether converges.
思路:Compare with a known convergent series.
步骤:
- and converges ()
- By comparison, converges.
答案:Convergent.
练习 5
Determine whether converges.
思路:Test absolute convergence; if it fails, use Leibniz (alternating) test.
步骤:
- Absolute series: is a -series with , so diverges.
- Original is alternating with .
- Check Leibniz conditions:
- ✓
- ✓ (since )
- ✓
- Conditions hold, so the series converges conditionally.
答案:Convergent (conditional).
总结
本文出现的符号
| 符号 | 类型 | 读音/说明 | 在本文中的含义 |
|---|---|---|---|
| 数学符号 | 数列表示法 | 表示一个数列, 是第 项 | |
| 希腊字母 | Sigma(西格玛) | 求和符号,表示级数 | |
| 数学符号 | 无穷大 | 表示无穷级数,项数无限 | |
| 数学符号 | 部分和 | 级数的前 项和 | |
| 数学符号 | 极限 | 表示数列或函数的极限 | |
| 希腊字母 | Rho(柔) | 表示级数收敛性判别中的极限值 |
中英对照
| 中文术语 | 英文术语 | 音标 | 说明 |
|---|---|---|---|
| 级数 | series | /ˈsɪəriːz/ | 无穷项的和,记作 |
| 无穷级数 | infinite series | /ˈɪnfɪnɪt ˈsɪəriːz/ | 项数无限的级数 |
| 通项 | general term | /ˈdʒenərəl tɜːm/ | 级数中第 项 |
| 部分和 | partial sum | /ˈpɑːʃəl sʌm/ | 级数前 项的和 |
| 收敛 | convergence | /kənˈvɜːdʒəns/ | 级数部分和序列有有限极限 |
| 发散 | divergence | /daɪˈvɜːdʒəns/ | 级数部分和序列无有限极限 |
| 和 | sum | /sʌm/ | 收敛级数的极限值 |
| 线性性质 | linearity property | /ˈlɪniəriti ˈprɒpəti/ | 级数运算的线性特征 |
| 必要条件 | necessary condition | /nɪˈsesəri kənˈdɪʃən/ | 级数收敛必须满足的条件 |
| 充分条件 | sufficient condition | /səˈfɪʃənt kənˈdɪʃən/ | 保证级数收敛的充分条件 |
| 条件收敛 | conditional convergence | /kənˈdɪʃənəl kənˈvɜːdʒəns/ | 级数收敛但绝对值级数发散 |
课程路线图
- 1
Exploring Functions in Advanced Mathematics
先修课程Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.
前往课程 - 2
Sequences
先修课程Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.
前往课程 - 3
The World of Limits in Advanced Mathematics
先修课程Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.
前往课程 - 4
Infinite Series
当前课程Explore convergence tests, summation, power-series expansions, and applications.
前往课程