导航菜单

Logarithmic Series

Definition

Logarithmic series

The series n=1(1)n+1nxn\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n is called the logarithmic series.

Convergence

Convergence of the logarithmic series
  • Converges when x<1|x| < 1
  • Converges at x=1x = 1 (by the Leibniz test)
  • Sum:

n=1(1)n+1nxn=ln(1+x)\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \ln(1+x)

Proof sketch

When x<1|x| < 1, apply the ratio test:

an+1an=nn+1x\frac{a_{n+1}}{a_n} = -\frac{n}{n+1} x

limnan+1an=x<1,\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = |x| < 1, so it converges.
When x=1x = 1, it becomes the alternating harmonic series and converges by Leibniz.

Examples

Example 1

Sum n=1(1)n+1n(12)n\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(\frac{1}{2}\right)^n.

Solution: x=12x = \frac{1}{2}, so ln(1+12)=ln32\ln\left(1 + \frac{1}{2}\right) = \ln\frac{3}{2}.

Example 2

Sum n=1(1)n+1n(13)n\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(\frac{1}{3}\right)^n.

Solution: x=13x = \frac{1}{3}, so ln43\ln\frac{4}{3}.

Example 3

Sum n=1(1)n+1n\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}.

Solution: x=1x = 1, so ln2\ln 2.

练习题

练习 1

Sum n=1(1)n+1n(14)n\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(\frac{1}{4}\right)^n.

参考答案

思路:Logarithmic series with x=14x = \frac{1}{4}.

答案ln54\ln\frac{5}{4}

练习 2

Sum n=1(1)n+1n(12)n\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(-\frac{1}{2}\right)^n.

参考答案

思路x=12x = -\frac{1}{2}.

答案ln(112)=ln2\ln\left(1 - \frac{1}{2}\right) = -\ln 2

练习 3

Sum n=1(1)n+1n(23)n\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(\frac{2}{3}\right)^n.

参考答案

思路x=23x = \frac{2}{3}.

答案ln53\ln\frac{5}{3}


总结

本文出现的符号

符号类型读音/说明在本文中的含义
\sum希腊字母Sigma(西格玛)求和符号,表示级数
\infty数学符号无穷大表示无穷级数,项数无限
xx数学符号变量对数级数中的变量
ln\ln数学符号自然对数自然对数函数,lnx=logex\ln x = \log_e x
lim\lim数学符号极限表示数列或函数的极限

中英对照

中文术语英文术语音标说明
对数级数logarithmic series/ˌlɒɡəˈrɪðmɪk ˈsɪəriːz/形如 n=1(1)n+1nxn\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n 的级数
自然对数natural logarithm/ˈnætʃərəl ˈlɒɡərɪðəm/ee 为底的对数,记作 lnx\ln x
收敛convergence/kənˈvɜːdʒəns/级数部分和序列有有限极限
收敛区间interval of convergence/ˈɪntəvəl əv kənˈvɜːdʒəns/级数收敛的区间
比值判别法ratio test/ˈreɪʃiəʊ test/通过相邻项比值判断收敛性的方法
莱布尼茨判别法Leibniz test/ˈlaɪbnɪts test/判断交错级数收敛性的方法

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索