导航菜单

Comparison Test

Definition

Comparison test

Let n=1an\sum_{n=1}^{\infty} a_n and n=1bn\sum_{n=1}^{\infty} b_n be positive-term series with anbna_n \le b_n (for large nn). Then:

  1. If n=1bn\sum_{n=1}^{\infty} b_n converges, so does n=1an\sum_{n=1}^{\infty} a_n.
  2. If n=1an\sum_{n=1}^{\infty} a_n diverges, so does n=1bn\sum_{n=1}^{\infty} b_n.

Tips

  • Compare with known convergent series (e.g., pp-series, geometric).
  • Compare with known divergent series (e.g., harmonic).

Example

Example 1

Determine convergence of n=11n2+1\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}.

Solution: 1n2+1<1n2\frac{1}{n^2+1} < \frac{1}{n^2} and 1n2\sum \frac{1}{n^2} converges (p=2p=2), so by comparison it converges.

练习题

练习 1

Determine convergence of n=11n2+n\sum_{n=1}^{\infty} \frac{1}{n^2 + n}.

参考答案

思路:Compare with 1n2\sum \frac{1}{n^2}.

答案:收敛(convergence)。


总结

本文出现的符号

符号类型读音/说明在本文中的含义
\sum希腊字母Sigma(西格玛)求和符号,表示级数
\infty数学符号无穷大表示无穷级数,项数无限
nn数学符号项数级数中的项数

中英对照

中文术语英文术语音标说明
比较判别法comparison test/kəmˈpærɪsən test/通过比较判断级数收敛性的方法
正项级数positive series/ˈpɒzətɪv ˈsɪəriːz/所有项都非负的级数
收敛convergence/kənˈvɜːdʒəns/级数部分和序列有有限极限
发散divergence/daɪˈvɜːdʒəns/级数部分和序列无有限极限
pp 级数pp-series/piː ˈsɪəriːz/形如 n=11np\sum_{n=1}^{\infty} \frac{1}{n^p} 的级数

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索