导航菜单

Power Series

Definition

Power series

The series n=0anxn\sum_{n=0}^{\infty} a_n x^n is called a power series, where ana_n are coefficients and xx is the variable.

Convergence

Convergence of power series

There exists a radius of convergence RR such that:

  • x<R|x| < R: convergent
  • x>R|x| > R: divergent
  • x=R|x| = R: needs separate check

You can find RR via the ratio or root test.

Finding the radius

Ratio test

Using the ratio test

If limnan+1an=L\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = L, then

  • L=0R=+L = 0 \Rightarrow R = +\infty
  • L=+R=0L = +\infty \Rightarrow R = 0
  • 0<L<+R=1L0 < L < +\infty \Rightarrow R = \frac{1}{L}

Root test

Using the root test

If limnann=L\lim_{n \to \infty} \sqrt[n]{|a_n|} = L, then

  • L=0R=+L = 0 \Rightarrow R = +\infty
  • L=+R=0L = +\infty \Rightarrow R = 0
  • 0<L<+R=1L0 < L < +\infty \Rightarrow R = \frac{1}{L}

Examples

Example 1

Radius of n=0xnn!\sum_{n=0}^{\infty} \frac{x^n}{n!}.

Solution: an=1n!a_n = \frac{1}{n!}, ratio limit 00, so R=+R = +\infty.

Example 2

Radius of n=0xn\sum_{n=0}^{\infty} x^n.

Solution: an=1a_n = 1, ratio limit 11, so R=1R = 1.

Example 3

Radius of n=0n!xn\sum_{n=0}^{\infty} n! x^n.

Solution: ratio +\to +\infty, so R=0R = 0.

Example 4

Radius of n=0xnn2\sum_{n=0}^{\infty} \frac{x^n}{n^2}.

Solution: ratio 1\to 1, so R=1R = 1.

练习题

练习 1

Radius of n=0n!xn\sum_{n=0}^{\infty} n! x^n.

参考答案

思路:Ratio test: (n+1)!n!=n+1+\frac{(n+1)!}{n!} = n+1 \to +\infty.

答案R=0R = 0.

练习 2

Radius of n=0xnn2\sum_{n=0}^{\infty} \frac{x^n}{n^2}.

参考答案

思路:Ratio 1\to 1.

答案R=1R = 1.

练习 3

Radius of n=0xnn3\sum_{n=0}^{\infty} \frac{x^n}{n^3}.

参考答案

思路:Ratio 1\to 1.

答案R=1R = 1.

练习 4

Radius of n=0xn2n\sum_{n=0}^{\infty} \frac{x^n}{2^n}.

参考答案

思路:Ratio 12\to \frac{1}{2}.

答案R=2R = 2.

练习 5

Radius of n=0xnn!\sum_{n=0}^{\infty} \frac{x^n}{n!}.

参考答案

思路:Ratio 0\to 0.

答案R=+R = +\infty.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
\sum希腊字母Sigma(西格玛)求和符号,表示级数
\infty数学符号无穷大表示无穷级数,项数无限
ana_n数学符号系数幂级数中第 nn 项的系数
xx数学符号变量幂级数中的变量
RR数学符号收敛半径幂级数收敛的半径
LL数学符号极限值比值或根值的极限
lim\lim数学符号极限表示数列或函数的极限
n!n!数学符号阶乘nn 的阶乘,n!=n×(n1)××1n! = n \times (n-1) \times \cdots \times 1

中英对照

中文术语英文术语音标说明
幂级数power series/ˈpaʊə ˈsɪəriːz/形如 n=0anxn\sum_{n=0}^{\infty} a_n x^n 的级数
收敛半径radius of convergence/ˈreɪdiəs əv kənˈvɜːdʒəns/幂级数收敛的半径 RR
系数coefficient/kəʊɪˈfɪʃənt/幂级数中各项的系数 ana_n
比值判别法ratio test/ˈreɪʃiəʊ test/通过相邻项比值判断收敛性的方法
根值判别法root test/ruːt test/通过 nn 次根判断收敛性的方法
收敛convergence/kənˈvɜːdʒəns/级数部分和序列有有限极限
发散divergence/daɪˈvɜːdʒəns/级数部分和序列无有限极限
阶乘factorial/fækˈtɔːriəl/n!=n×(n1)××1n! = n \times (n-1) \times \cdots \times 1

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索