导航菜单

$p$-Series

Definition

$p$-series

The series n=11np\sum_{n=1}^{\infty} \frac{1}{n^p} is called a pp-series, where pp is a real number.

Convergence

Convergence of $p$-series
  • Converges when p>1p > 1
  • Diverges when p1p \leq 1

Proof sketch

Use the integral test.

Let f(x)=1xpf(x) = \frac{1}{x^p}, continuous, decreasing, and nonnegative on [1,+)[1,+\infty) with an=f(n)a_n = f(n).

For p1p \neq 1: 1+1xpdx=x1p1p1+\int_1^{+\infty} \frac{1}{x^p} dx = \frac{x^{1-p}}{1-p} \big|_1^{+\infty}

  • If p>1p > 1, the integral converges.
  • If p<1p < 1, the integral diverges.

For p=1p = 1: 1+1xdx=lnx1+=+,\int_1^{+\infty} \frac{1}{x} dx = \ln x \big|_1^{+\infty} = +\infty, so it diverges.

Examples

Example 1: Determine convergence of n=11n2\sum_{n=1}^{\infty} \frac{1}{n^2}.

Solution: p=2>1p = 2 > 1 so it converges.

Example 2: Determine convergence of n=11n3\sum_{n=1}^{\infty} \frac{1}{n^3}.

Solution: p=3>1p = 3 > 1 so it converges.

Example 3: Determine convergence of n=11n\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}.

Solution: p=121p = \frac{1}{2} \le 1 so it diverges.

练习题

练习 1

Determine convergence of n=11n3\sum_{n=1}^{\infty} \frac{1}{n^3}.

参考答案

思路pp-series, compare pp with 1.

答案p=3>1p = 3 > 1, convergent.

练习 2

Determine convergence of n=11n4\sum_{n=1}^{\infty} \frac{1}{n^4}.

参考答案

思路pp-series, p=4>1p = 4 > 1.

答案:Convergent.

练习 3

Determine convergence of n=11n\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}.

参考答案

思路pp-series, p=121p = \frac{1}{2} \le 1.

答案:Divergent.

练习 4

Determine convergence of n=11n1.5\sum_{n=1}^{\infty} \frac{1}{n^{1.5}}.

参考答案

思路pp-series, p=1.5>1p = 1.5 > 1.

答案:Convergent.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
\sum希腊字母Sigma(西格玛)求和符号,表示级数
\infty数学符号无穷大表示无穷级数,项数无限
pp数学符号参数pp 级数的参数,决定级数的收敛性
nn数学符号项数级数中的项数
\int数学符号积分表示定积分或不定积分
ln\ln数学符号自然对数自然对数函数
lim\lim数学符号极限表示数列或函数的极限

中英对照

中文术语英文术语音标说明
pp 级数pp-series/piː ˈsɪəriːz/形如 n=11np\sum_{n=1}^{\infty} \frac{1}{n^p} 的级数
收敛convergence/kənˈvɜːdʒəns/级数部分和序列有有限极限
发散divergence/daɪˈvɜːdʒəns/级数部分和序列无有限极限
积分判别法integral test/ˈɪntɪɡrəl test/通过积分判断级数收敛性的方法
比较判别法comparison test/kəmˈpærɪsən test/通过比较判断级数收敛性的方法

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索